Journal of Thermal Analysis and Calorimetry

, Volume 98, Issue 1, pp 29–37

Crystallisation of triacylglycerols in nanoparticles

Effect of dispersion and polar lipids
Article

Abstract

The crystallisation properties of a mixture of triacylglycerols (TG), cocoa butter (CB) 75%/miglyol 25%, were investigated on cooling at 0.5 °C/min using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The influence of (i) the dispersion of TG within nanoparticles stabilised by proteins, and of (ii) the presence of polar lipids were characterised. In bulk, crystallisation of TG successively occurred with a α 2L (49.3 Å) structure, then the formation of longitudinal stackings of 44.5 and 34.5 Å of β′ form was interpreted as co-crystallisation of TG from CB and miglyol. The dispersion of TG in nanoparticles of about 400 nm induced a higher supercooling and changed their crystallisation properties. The formation of α 49.2 Å and β′ 45 Å structures corresponded to the segregation of TG from CB in solid phases while TG from miglyol remained liquid. Phospholipids with saturated fatty acid chains affected the thermal properties of TG, which demonstrated their localisation at the surface of the nanoparticles. DSC and XRD revealed to be very sensitive and adapted methods to increase the knowledge about the mechanisms of crystallisation in emulsion.

Keywords

Droplet emulsion Interface Phospholipid Solid fat phase DSC X-ray diffraction 

References

  1. 1.
    Coupland JN. Crystallization in emulsions. Curr Opin Colloid Interface Sci. 2002;7:445–50.CrossRefGoogle Scholar
  2. 2.
    Rousseau D. Fat crystals and emulsion stability—a review. Food Res Int. 2000;3:3–14.CrossRefGoogle Scholar
  3. 3.
    Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–77.CrossRefGoogle Scholar
  4. 4.
    Unruh T, Bunjes H, Westesen K, Koch MHJ. Investigations on the melting behaviour of triglyceride nanoparticles. Colloid Polym Sci. 2001;279:398–403.CrossRefGoogle Scholar
  5. 5.
    Bunjes H, Koch MHJ, Westesen K. Effect of particle size on colloidal solid triglycerides. Langmuir. 2000;16:5234–41.CrossRefGoogle Scholar
  6. 6.
    Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. Physico-chemical stability of colloidal lipid particles. Biomaterials. 2003;24:4283–300.CrossRefGoogle Scholar
  7. 7.
    Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:131–55.CrossRefGoogle Scholar
  8. 8.
    Lopez C, Briard-Bion V, Camier B, Gassi J-Y. Milk fat thermal properties and solid fat content in Emmental cheese: a differential scanning calorimetry study. J Dairy Sci. 2006;89:2894–910.CrossRefGoogle Scholar
  9. 9.
    McClements DJ, Dickinson E, Dungan SR, Kinsella JE, Ma JG, Povey MJW. Effect of emulsifier type on the crystallization kinetics of oil-in-water emulsions containing a mixture of solid and liquid droplets. J Colloid Interface Sci. 1993;160:293–7.CrossRefGoogle Scholar
  10. 10.
    Dickinson E, Kruizenga F-J, Povey MJW, van der Molen M. Crystallization in oil-in-water emulsions containing liquid and solid droplet. Colloids Surf A. 1993;81:273–9.CrossRefGoogle Scholar
  11. 11.
    Skoda W, van den Tempel M. Crystallization of emulsified triglycerides. J Colloid Sci. 1963;16:568–84.CrossRefGoogle Scholar
  12. 12.
    Özilgen S, Simoneau C, German JB, McCarthy MJ, Reid DS. Crystallization kinetics of emulsified triglycerides. J Sci Food Agric. 1993;61:101–8.CrossRefGoogle Scholar
  13. 13.
    Lopez C, Bourgaux C, Lesieur P, Bernadou S, Keller G, Ollivon M. Thermal and structural behavior of milk fat: 3. Influence of cream cooling rate and droplet size. J Colloid Interface Sci. 2002;254:64–78.Google Scholar
  14. 14.
    Lopez C, Karray N, Lesieur P, Ollivon M. Crystallisation and melting properties of dromedary milk fat globules studied by X-ray diffraction and differential scanning calorimetry. Comparison with anhydrous dromedary milk fat. Eur J Lipid Sci Technol. 2005;107:673–83.CrossRefGoogle Scholar
  15. 15.
    Ben Amara-Dali W, Lopez C, Lesieur P, Ollivon M. Crystallization properties and polymorphism of triacylglycerols in goat's milk fat globules. J Agric Food Chem. 2008;56:4511–22.CrossRefGoogle Scholar
  16. 16.
    Lopez C, Lesieur P, Keller G, Ollivon M. Thermal and structural behavior of milk fat: 1. Unstable species of cream. J Colloid Interface Sci. 2000;229:62–71.CrossRefGoogle Scholar
  17. 17.
    Lopez C, Lesieur P, Bourgaux C, Keller G, Ollivon M. Thermal and structural behavior of milk fat: 2. Crystalline forms obtained by slow cooling of cream. J Colloid Interface Sci. 2001;240: 50–61.CrossRefGoogle Scholar
  18. 18.
    Lopez C, Bourgaux C, Lesieur P, Ollivon M. Crystalline structures formed in cream and anhydrous milk fat at 4 °C. Lait. 2002;82:317–35.CrossRefGoogle Scholar
  19. 19.
    Michalski M-C, Ollivon M, Briard V, Leconte N, Lopez C. Native fat globules of different sizes selected from raw milk: thermal and structural behavior. Chem Phys Lipids. 2004;132:247–61.CrossRefGoogle Scholar
  20. 20.
    Lopez C. Contribution à l’étude de la cristallisation des triacylglycerols: application aux emulsions laitières. PhD thesis Univ. Paris VI (2001).Google Scholar
  21. 21.
    Lopez C, Maillard M-B, Briard-Bion V, Camier B, Hannon J. Lipolysis during ripening of Emmental cheese considering organization of fat and preferential localization of bacteria. J Agric Food Chem. 2006;54:5855–67.CrossRefGoogle Scholar
  22. 22.
    Lopez C, Riaublanc A, Lesieur P, Bourgaux C, Keller G, Ollivon M. Definition of a model fat for crystallization-in-emulsion studies. J Am Oil Chem Soc. 2001;78:1233–44.CrossRefGoogle Scholar
  23. 23.
    Wille RL, Lutton ES. Polymorphism of cocoa butter. J Am Oil Chem Soc. 1966;43:491–6.CrossRefGoogle Scholar
  24. 24.
    Van Malssen K, Peschar R, Schank H. Real-time X-ray powder diffraction investigations on cocoa butter. I. Temperature-dependent crystallization behavior. J Am Oil Chem Soc. 1996;73:1209–15.CrossRefGoogle Scholar
  25. 25.
    Loisel C, Keller G, Lecq G, Bourgaux C, Ollivon M. Phase transition and polymorphism of cocoa butter. J Am Oil Chem Soc. 1998;75:425–39.CrossRefGoogle Scholar
  26. 26.
    Small DM. In: Handbook of lipid research. The physical chemistry of lipids. From alkanes to phospholipids. New York: Plenum Press; 1986. p. 512.Google Scholar
  27. 27.
    Lopez C, Bourgaux C, Lesieur P, Ollivon M. Coupling of time-resolved synchrotron X-ray diffraction and DSC to elucidate the crystallisation properties and polymorphism of triglycerides in milk fat globules. Lait. 2007;87:459–80.CrossRefGoogle Scholar
  28. 28.
    Ollivon M, Keller G, Bourgaux C, Kalnin D, Villeneuve P, Lesieur P. DSC and high resolution X-ray diffraction coupling. J Thermal Anal Calorim. 2006;85:219–24.CrossRefGoogle Scholar
  29. 29.
    Davis TR, Dimick PS. Lipid composition of high-melting seed crystals formed during cocoa butter solidification. J Am Oil Chem Soc. 1989;66:1494–8.CrossRefGoogle Scholar
  30. 30.
    Grabielle-Madelmont C, Perron R. Calorimetric studies on phospholipid-water systems. I. DL-dipalmitoylphosphatidylcholine (DPPC)-water system. J Colloid Interface Sci. 1983;95:471.CrossRefGoogle Scholar
  31. 31.
    Guinier A, In: Théorie et technique de la radiocristallographie, 3éme éd., Paris: Dunod; 1964.Google Scholar
  32. 32.
    Awad T, Sato K. Acceleration of crystallisation of palm kernel oil in oil-in-water emulsion by hydrophobic emulsifier additives. Colloids Surf B. 2002;25:45–53.CrossRefGoogle Scholar
  33. 33.
    Awad T, Sato K. Effects of hydrophobic emulsifier additives on crystallization behavior of palm mid fraction in oil-in water emulsion. J Am Oil Chem Soc. 2001;78:837–42.CrossRefGoogle Scholar
  34. 34.
    Kalnin D, Schafer O, Amenitsch H, Ollivon M. Fat crystallization in emulsion: influence of emulsifier. Cryst Growth Des 2004;4:1283–93.CrossRefGoogle Scholar
  35. 35.
    Dahim M, Gustafsson J, Puisieux F, Ollivon M. Solubilization of phospholipid: triacylglycerol aggregates by non-ionic surfactants. Chem Phys Lipids. 1998;97:1–14.CrossRefGoogle Scholar
  36. 36.
    Raffournier C, Ollivon M, Couvreur P, Dubernet C. Solubility of triacylglycerols or stearylamine in phospholipid vesicles. Prog Colloid Polym Sci. 2004;126:6–13.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.UMR 1253 INRA-Agrocampus OuestRennes cedexFrance
  2. 2.UMR 8612 CNRS-Univ. Paris XIChâtenay-MalabryFrance

Personalised recommendations