Crystallization kinetics of SrBi2B2O7 glasses by non-isothermal methods

  • Koushik Majhi
  • K. B. R. VarmaEmail author


Transparent glasses of SrBi2B2O7 (SBBO) were fabricated via the conventional melt-quenching technique. The amorphous and the glassy nature of the as-quenched samples were, respectively, confirmed by X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). The glass transition (T g) and the crystallization parameters [crystallization activation energy (E cr) and Avrami exponent (n)] were evaluated under non-isothermal conditions using DSC. There was a close agreement between the activation energies for the crystallization process determined by Augis and Bennet and Kissinger methods. The variation of local activation energy [E c(x)] that was determined by Ozawa method, decreased with the fraction of crystallization (x). The Avrami exponent (n(x)) increased with the increase in fraction of crystallization (x) suggesting that there was a change over in the crystallization process from the surface to the bulk.


Glass transition Crystallization Borate Non-linear optics Polar Activation energy 


  1. 1.
    Takahashi Y, Benino Y, Fujiwara T, Komatsu T. Second harmonic generation in transparent surface crystallized glasses with stillwellite-type LaBGeO5. J Appl Phys. 2001;89:5282–7.CrossRefGoogle Scholar
  2. 2.
    Murugan GS, Varma KBR, Takahashi Y, Komatsu T. Nonlinear-optic and ferroelectric behavior of lithium borate–strontium bismuth tantalate glass–ceramic composite. Appl Phys Lett. 2001;78:4019–21.CrossRefGoogle Scholar
  3. 3.
    Prasad NS, Varma KBR, Takahashi Y, Benino Y, Fujiwara T, Komatsu T. Evolution and characterization of fluorite-like nano-SrBi2Nb2O9 phase in the SrO–Bi2O3–Nb2O5–Li2B4O7 glass system. J Solid State Chem. 2003;173:209–15.CrossRefGoogle Scholar
  4. 4.
    Barbier J, Cranswick LMD. The non-centrosymmetric borate oxides, MBi2B2O7 (M=Ca, Sr). J Solid State Chem. 2006;179:3958–64.CrossRefGoogle Scholar
  5. 5.
    Ray CS, Zang T, Reis ST, Brow RK. Determining kinetic parameters for isothermal crystallization of glasses. J Am Ceram Soc. 2007;90:769–73.CrossRefGoogle Scholar
  6. 6.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  7. 7.
    Mehta N, Kumar A. Comparative analysis of calorimetric studies in Se90M10 (M=In, Te, Sb) chalcogenide glasses. J Therm Anal Calorim. 2007;87:345–50.CrossRefGoogle Scholar
  8. 8.
    Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kissinger kinetic analysis of data obtained under different heating schedules. J Therm Anal Calorim. 2008;94:427–32.CrossRefGoogle Scholar
  9. 9.
    Nitsch K, Rodová M. Crystallization study of Na–Gd phosphate glass using non-isothermal DTA. J Therm Anal Calorim. 2008;91:137–40.CrossRefGoogle Scholar
  10. 10.
    Avrami MJ. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.CrossRefGoogle Scholar
  11. 11.
    Avrami MJ. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.CrossRefGoogle Scholar
  12. 12.
    Avrami MJ. Granulation phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–84.CrossRefGoogle Scholar
  13. 13.
    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57:217–21.Google Scholar
  14. 14.
    Augis JA, Bennett JE. Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. J Therm Anal. 1978;13:283–92.CrossRefGoogle Scholar
  15. 15.
    Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15. Mater Sci Eng. 1976;23:173–7.CrossRefGoogle Scholar
  16. 16.
    Bansal NP, Doremus RH, Bruce AJ, Moynihan CT. Kinetics of crystallization of ZrF4–Ba2–LaF3 glass by differential scanning calorimetry. J Am Ceram Soc. 1983;66:233–8.CrossRefGoogle Scholar
  17. 17.
    Prasad NS, Varma KBR. Crystallization kinetics of the LiBO2–Nb2O5 glass using differential thermal analysis. J Am Ceram Soc. 2005;88:357–61.CrossRefGoogle Scholar
  18. 18.
    Matusita K, Komatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mat Sci. 1984;19:291–6.CrossRefGoogle Scholar
  19. 19.
    Calka A, Radlinski AP. The local value of the avrami exponent: a new approach to devitrification of glassy metallic ribbons. Mater Sci Eng. 1988;97:241–6.CrossRefGoogle Scholar
  20. 20.
    Lu W, Yan B, Huang W. Complex primary crystallization kinetics of amorphus Finemet alloy. J Non Cryst Solids. 2005;351:3320–4.CrossRefGoogle Scholar
  21. 21.
    Lu K, Wang JT. Activation energies for crystal nucleation and growth in amorphous alloys. Mater Sci Eng A. 1991;133:500–3.CrossRefGoogle Scholar
  22. 22.
    Ozawa T. Applicability of Friedman plot. J Therm Anal. 1986;31:547–51.CrossRefGoogle Scholar
  23. 23.
    Yinnon H, Uhlmann DR. Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: theory. J Non Cryst Solids. 1983;54:253–75.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations