Advertisement

The effect of ionic environment on the TG response of phenol loaded PET-based porous carbons

  • Ajna Tóth
  • Csaba Novák
  • Krisztina LászlóEmail author
Article

Abstract

The effect of the ionic environment on the adsorption of phenol from aqueous solutions was investigated in a microporous carbon and in an oxidized carbon. It was found that not only the pH of the solution but also the method of its setting affects the adsorption capacity. Thermal desorption of phenol exhibits an even stronger dependence on the method of pH setting than adsorption. The TG response, the position and the corresponding TG steps are also influenced by the surface chemistry. Thermogravimetry is found to be outstandingly useful and informative technique for the studying sorption interactions.

Keywords

Activated carbon Adsorption/desorption pH dependence Thermal analysis Surface properties 

Notes

Acknowledgement

We extend our thanks to E. Geissler for useful discussions and to G. Bosznai for technical assistance. This research was supported by the EU—Hungarian joint fund (GVOP – 3.2.2–2004–07-0006/3.0) and the DAAD-MÖB project (#33/2006).

References

  1. 1.
    Leon y Leon CA, Radovic RL. Interfacial chemistry and electrochemistry of carbon surfaces. In: Thrower PA, editor. Chemistry and physics of carbon, vol. 24. New York: Marcel Dekker; 1994. p. 213–310.Google Scholar
  2. 2.
    Boehm HP. Chemical identification of surface groups. In: Eley DD, Pines H, Weisz PB, editors. Advances in catalysis, vol. 16. New York: Academic Press; 1966. p. 179–274.Google Scholar
  3. 3.
    Bismarck A, Wuertz C, Springer J. Basic surface oxides on carbon fibers. Carbon. 1999;37:1019–27.CrossRefGoogle Scholar
  4. 4.
    López-Ramón MV, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon. 1999;37:1215–21.CrossRefGoogle Scholar
  5. 5.
    Suárez D, Menéndez JA, Fuente E, Montes-Morán MA. Contribution of pyrone-type structures to carbon basicity: an ab initio study. Langmuir. 1999;15:3897–904.CrossRefGoogle Scholar
  6. 6.
    Arenillas A, Rubiera F, Pevida F, Ania CO, Pis JJ. Relationship between structure and reactivity of carbonaceous materials. J Therm Anal Calorim. 2004;76:593–602.CrossRefGoogle Scholar
  7. 7.
    Haydar S, Joly JP. Study of the evolution of carbon dioxide from active carbon by a threshold temperature-programmed desorption method. J Therm Anal Calorim. 1998;52:345–53.CrossRefGoogle Scholar
  8. 8.
    Llewellyn P, Rouquerol J. SCTA and adsorbents. J Therm Anal Calorim. 2003;72:1099–101.CrossRefGoogle Scholar
  9. 9.
    Amaya A, Píriz J, Tancredi N, Cordero T. Activated carbon pellets from eucalyptus char and tar TG studies. J Therm Anal Calorim. 2007;89:987–91.CrossRefGoogle Scholar
  10. 10.
    Suzuki M, Misic DM, Koyama O, Kawazoe K. Study of thermal regeneration of spent activated carbons: thermogravimetric measurement of various single component organics loaded on activated carbons. Chem Eng Sci. 1978;33:271–9.CrossRefGoogle Scholar
  11. 11.
    Magne P, Walker PL Jr. Phenol adsorption on activated carbons: application to the regeneration of activated carbons polluted with phenol. Carbon. 1986;24:101–7.CrossRefGoogle Scholar
  12. 12.
    Maroto-Valer MM, Dranca I, Clifford D, Lupascu T, Nastas R, Leon y Leon CA. Thermal regeneration of activated carbons saturated with ortho- and meta-chlorophenols. Thermochim Acta. 2006;444:148–56.CrossRefGoogle Scholar
  13. 13.
    Moreno-Castilla C, Rivera-Utrilla J, Joly JP, López-Ramón MV, Ferro-García MA, Carrasco-Marin F. Thermal regeneration of an activated carbon exhausted with different substituted phenols. Carbon. 1995;33:1417–23.CrossRefGoogle Scholar
  14. 14.
    Salvador F, Sánchez-Montero MJ, Salvador A, Martín MJ. Study of the energetic heterogeneity of the adsorption of phenol onto activated carbons by TPD under supercritical conditions. Appl Surf Sci. 2005;252:641–6.CrossRefGoogle Scholar
  15. 15.
    Ferro-García MA, Utrera-Hidalgo E, Rivera-Utrilla J, Moreno-Castilla C, Joly JP. Regeneration of activated carbons exhausted with chlorophenols. Carbon. 1993;31:857–63.CrossRefGoogle Scholar
  16. 16.
    Humayun R, Karakas G, Dahlstrom PR, Ozkan US, Tomasko DL. Supercritical fluid extraction and temperature-programmed desorption of phenol and its oxidative coupling products from activated carbon. Ind Eng Chem Res. 1998;37:3089–97.CrossRefGoogle Scholar
  17. 17.
    Álvarez PM, Beltrán FJ, Gómez-Serrano V, Jaramillo J, Rodríguez EM. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol. Water Res. 2004;38:2155–65.CrossRefGoogle Scholar
  18. 18.
    Ania CO, Parra JB, Pevida C, Arenillas A, Rubiera F, Pis JJ. Pyrolysis of activated carbons exhausted with organic compounds. J Anal Appl Pyrol. 2005;74:518–24.CrossRefGoogle Scholar
  19. 19.
    Nevskaia DM, Guerrero-Ruiz A. Comparative study of the adsorption from aqueous solutions and the desorption of phenol and nonylphenol substrates on activated carbons. J Coll Int Sci. 2001;234:316–21.CrossRefGoogle Scholar
  20. 20.
    Castillejos-López E, Nevskaia DM, Muñoz V, Guerrero-Ruiz A. On the interactions of phenol, aniline and p-nitrophenol on activated carbon surfaces as detected by TPD. Carbon. 2008;46:870–5.CrossRefGoogle Scholar
  21. 21.
    Terzyk AP. Further insights into the role of carbon surface functionalities in the mechanism of phenol adsorption. J Coll Int Sci. 2003;268:301–29.CrossRefGoogle Scholar
  22. 22.
    Derbyshire F, Jagtoyen M, Andrews R, Rao A, Martin-Gullón I, Grulke EA. Carbon materials in environmental application. In: Radovic LR, editor. Chemistry and physics of carbon, vol. 27. New York: Marcel Dekker; 2001. p. 2–66.Google Scholar
  23. 23.
    László K, Bóta A, Nagy LG. Characterization of activated carbons from waste materials by adsorption from aqueous solutions. Carbon. 1997;35:593–8.CrossRefGoogle Scholar
  24. 24.
    Tessmer CH, Vidic RD, Uranowski LJ. Impact of oxygen-containing surface functional groups on activated carbon adsorption of phenols. Environ Sci Technol. 1997;31:1872–8.CrossRefGoogle Scholar
  25. 25.
    Newcombe G, Hayes R, Drikas M. Granular activated carbon – importance of surface-properties in the adsorption of naturally-occurring organics. Coll Surf A. 1993;78:65–71.CrossRefGoogle Scholar
  26. 26.
    Mázor L, editor. Analitikai Zsebkönyv (Analytical pocketbook). Budapest: Műszaki Könyvkiadó; 1971. p. 394.Google Scholar
  27. 27.
    Salame II, Bandosz TJ. Role of surface chemistry in adsorption of phenol on activated carbons. J Coll Int Sci. 2003;264:307–12.CrossRefGoogle Scholar
  28. 28.
    László K, Szűcs A. Surface characterization of polyethyleneterephthalate (PET) based activated carbon and the effect of pH on its adsorption capacity from aqueous phenol and 2,3,4-trichlorophenol solutions. Carbon. 2001;39:1945–53.CrossRefGoogle Scholar
  29. 29.
    Fierro V, Torné-Fernández V, Montané D, Celzard A. Adsorption of phenol onto activated carbons having different textural and surface properties. Micropor Mesopor Mater. 2008;111:276–84.CrossRefGoogle Scholar
  30. 30.
    Franz M, Arafat HA, Pinto NG. Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon. 2000;38:1807–19.CrossRefGoogle Scholar
  31. 31.
    Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM. Modification of the surface chemistry of activated carbons. Carbon. 1999;37:1379–89.CrossRefGoogle Scholar
  32. 32.
    Tóth A. Diploma thesis. Budapest, Hungary: Budapest University of Technology and Economics; 2008.Google Scholar
  33. 33.
    Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-Amoró D, Linares-Solano A, Béguin F. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization. Carbon. 2005;43:786–95.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Department of Physical Chemistry and Materials ScienceBudapest University of Technology and Economics HungaryBudapestHungary
  2. 2.Research Group of Technical Analytical Chemistry, Hungarian Academy of SciencesBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations