Journal of Thermal Analysis and Calorimetry

, Volume 96, Issue 3, pp 705–713 | Cite as

Latent catalytic systems for ring-opening metathesis-based thermosets

Article

Abstract

Synthesis and curing activity of latent ring-opening metathesis polymerization (ROMP)-based catalytic systems are reported using polydicyclopentadiene (pDCPD) as a model system. Differential scanning calorimetry (DSC) is used to monitor the ROMP reactions and to characterize the cured networks. These systems are either slow or completely inactive at ambient temperatures, yet at high temperatures the superior curing activity of other ROMP catalysts are retained. The resulting thermosets show glass transition temperatures from 10 to 25 °C higher than when cured with other ROMP catalysts.

Keywords

Curing kinetics Grubbs catalysts Ozawa–Flynn–Wall isoconversional model-free approach Ring-opening metathesis polymerization 

References

  1. 1.
    Ivin KJ, Mol JC. Olefin metathesis, metathesis polymerization. San Diego, CA: Academic Press; 1997.Google Scholar
  2. 2.
    Bielawski CW, Grubbs RH. Living ring-opening metathesis polymerization. Prog Polym Sci. 2007;32:1–29.CrossRefGoogle Scholar
  3. 3.
    Grubbs RH, Tumas W. Polymer synthesis and organotransition metal chemistry. Science 1989;243:907–15.CrossRefGoogle Scholar
  4. 4.
    Rouhi AM. Olefin metathesis: big-deal reaction. Chem Eng News. 2002;80:29–33.Google Scholar
  5. 5.
    Rouhi AM. Olefin metathesis: the early days. Chem Eng News. 2002;80:34–8.Google Scholar
  6. 6.
    Nguyen ST, Johnson LK, Grubbs RH. Ring-opening metathesis polymerization (ROMP) of norbornene by a group VIII carbene complex in protic media. J Am Chem Soc. 1992;114:3974–5.CrossRefGoogle Scholar
  7. 7.
    Nguyen ST, Grubbs RH. Syntheses and activities of new single-component, ruthenium-based olefin metathesis catalysis. J Am Chem Soc. 1993;115:9858–9.CrossRefGoogle Scholar
  8. 8.
    Dias EL, Nguyen ST, Grubbs RH. Well-defined ruthenium olefin metathesis catalysts: mechanism and activity. J Am Chem Soc. 1997;119:3887–97.CrossRefGoogle Scholar
  9. 9.
    Grubbs RH. Olefin-metathesis catalysts for the preparation of molecules and materials. Angew Chem Int Ed. 2006;45:3760–5.CrossRefGoogle Scholar
  10. 10.
    Scholl M, Ding S, Choon WL, Grubbs RH. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org Lett. 1999;1:953–6.CrossRefGoogle Scholar
  11. 11.
    Jones AS, Rule JD, Moore JS, White SR, Sottos NR. Catalyst morphology and dissolution kinetics for self-healing polymers. Chem Mater. 2006;18:1312–7.CrossRefGoogle Scholar
  12. 12.
    Sanford MS, Love JA, Grubbs RH. A versatile precursor for the synthesis of new ruthenium olefin metathesis catalysts. Organometallics 2001;20:5314–8.CrossRefGoogle Scholar
  13. 13.
    Bolton SL, Williams JE, Sponsler MB. Stablilization of (Trialkylphosphine)ruthenium alkylidene metathesis catalysts using phosphine exchange. Organometallics 2007;26:2485–7.CrossRefGoogle Scholar
  14. 14.
    Ozawa T. A new method for analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  15. 15.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.CrossRefGoogle Scholar
  16. 16.
    Sanford MS, Love JA, Grubbs RH. Mechanism and activity of ruthenium olefin metathesis catalysis. J Am Chem Soc. 2001;123:6543–54.CrossRefGoogle Scholar
  17. 17.
    Hong SH, Day MW, Grubbs RH. Decomposition of a key intermediate in ruthenium-catalyzed olefin metathesis reactions. J Am Chem Soc. 2004;126:7414–5.CrossRefGoogle Scholar
  18. 18.
    Hong SH, Wenzel AG, Salguero TT, Day MW, Grubbs RH. Decomposition of ruthenium olefin metathesis catalysts. J Am Chem Soc. 2007;129:7961–8.CrossRefGoogle Scholar
  19. 19.
    Metton® and Telene® brochures. Brochures downloaded from http://www.metton.com and http://www.telene.com.
  20. 20.
    Sanford MS, Ulman M, Grubbs RH. New insights into the mechanism of ruthenium-catalyzed olefin metathesis reactions. J Am Chem Soc. 2001;123:749–50.CrossRefGoogle Scholar
  21. 21.
    Bielawski CW, Grubbs RH. Highly efficient ring-opening metathesis polymerization (ROMP) using new ruthenium catalysts containing N-heterocyclic carbene ligands. Angew Chem Int Ed. 2000;39:2903–6.CrossRefGoogle Scholar
  22. 22.
    Kessler MR, White SR. Cure kinetics of the ring-opening metathesis polymerization of dicyclopentadiene. J Polym Sci Part A. 2002;40:2373–83.CrossRefGoogle Scholar
  23. 23.
    Choi T-L, Grubbs RH. Controlled living ring-opening-metathesis polymerization by a fast-initiating ruthenium catalyst. Angew Chem Int Ed. 2003;42:1743–6.CrossRefGoogle Scholar
  24. 24.
    Crabtree RH, editor. The organometallic chemistry of the transition metals. 4th ed. New York: John Wiley and Sons; 2005. p. 104–11.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  1. 1.Department of ChemistryIowa State UniversityAmesUSA
  2. 2.Department of Materials Science and EngineeringIowa State UniversityAmesUSA

Personalised recommendations