First principles studies of thermal decomposition of anhydrous zinc oxalate

  • A. Koleżyński
  • A. Małecki


The results of first principles calculations of band structure, density of states and electron density topology of ZnC2O4 crystal are presented. The calculations have been performed with WIEN2k FP LAPW ab initio package. The obtained SCF electron density has been used in calculations of Bader’s QTAIM (quantum theory of atoms in molecules) topological properties of the electron density in crystal. Additional calculations of bond orders (Pauling, Bader, Cioslowski and Mixon) and bond valences according to bond valence model have been done. The obtained results are analyzed from the point of view of the thermal decomposition process, and this analysis indicates, that most probably this compound should decompose to metal oxide, carbon oxide and carbon dioxide, in agreement with the experiment.


bond order bond valence electron density topology FP-LAPW ab initio calculations thermal decomposition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. D. Kondrashev, V. S. Bogdanov, S. N. Golubev and G. F. Pron, Zh. Struct. Khim., 26 (1985) 90.Google Scholar
  2. 2.
    E. Jeanneau, N. Audebrand and D. Louer, Acta Cryst., C57 (2001) 1012.Google Scholar
  3. 3.
    B. Małecka, E. Drożdż-Cieśla and A. Małecki, Thermochim. Acta, 423 (2004) 13.CrossRefGoogle Scholar
  4. 4.
    M. E. Brown, D. Dollimore and A. K. Galwey, Comprehensive Chemical Kinetics, Vol. 22. Reactions In Solid State, C. H. Bamford and C. F. H. Tipper, Eds, Elsevier Amsterdam 1980.Google Scholar
  5. 5.
    V. V. Boldyrev, I. S. Nevyantsev, Y. I. Mikhailov and E. F. Khayretdinov, Kinet. Katal., 11 (1970) 367.Google Scholar
  6. 6.
    H. J. Borchardt and F. Daniels, J. Am. Chem. Soc., 79 (1957) 41.CrossRefGoogle Scholar
  7. 7.
    D. Dollimore, Thermochim. Acta, 117 (1987) 331.CrossRefGoogle Scholar
  8. 8.
    B. S. Randhawa and M. Kaur, J. Therm. Anal. Cal., 89 (2007) 251.CrossRefGoogle Scholar
  9. 9.
    A. K. Galwey and M.E. Brown, J. Therm. Anal. Cal., 90 (2007) 9.CrossRefGoogle Scholar
  10. 10.
    J. Fujita, K. Nakamoto and M. Kobayashi, J. Phys. Chem., 61 (1957) 1014.CrossRefGoogle Scholar
  11. 11.
    S. Rane, H. Uskaikar, R. Pednekar and R. Mhalsikar, J. Therm. Anal. Cal., 90 (2007) 627.CrossRefGoogle Scholar
  12. 12.
    P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria), ISBN 3-9501031-1-2, (2001).Google Scholar
  13. 13.
    J. C. Slater, Phys. Rev., 51 (1937) 151.CrossRefGoogle Scholar
  14. 14.
    T. L. Loucks, Augmented Plane Wave Method, Benjamin, New York 1967.Google Scholar
  15. 15.
    O. K. Andersen, Solid State Commun., 13 (1973) 133.CrossRefGoogle Scholar
  16. 16.
    D. R. Hamann, Phys. Rev. Lett., 42 (1979) 662.CrossRefGoogle Scholar
  17. 17.
    E. Wimmer, H. Krakauer, M. Weinert and A. J. Freeman, Phys. Rev., B24 (1981) 864.Google Scholar
  18. 18.
    D. J. Singh, Planewaves, Pseudopotentials and the LAPW Method, Kluwer Academic Publishers, Dordrecht 1994.Google Scholar
  19. 19.
    A. Koleżyski and A. Małecki, J. Therm. Anal. Cal., sent to editor.Google Scholar
  20. 20.
    J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77 (1996) 3865.CrossRefGoogle Scholar
  21. 21.
    R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Clarendon Press, Oxford 1990.Google Scholar
  22. 22.
    L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York 1960.Google Scholar
  23. 23.
    R. F. W. Bader, T. S. Slee, D. Cremer and E. Kraka, J. Am. Chem. Soc., 105 (1983) 5061.CrossRefGoogle Scholar
  24. 24.
    J. Cioslowski and S. T. Mixon, J. Am. Chem. Soc., 113 (1991) 4142.CrossRefGoogle Scholar
  25. 25.
    J. L. Jules and J. R. Lombardi, J. Mol. Struct. (Teochem.), 664–665 (2003) 255.CrossRefGoogle Scholar
  26. 26.
    I. D. Brown, The Chemical Bond in Inorganic Chemistry. The Bond Valence Model., Oxford University Press, 2002.Google Scholar
  27. 27.
    A. Koleżyski and A. Małecki, J. Therm. Anal. Cal., sent to editor.Google Scholar
  28. 28.
    S. T. Howard and O. Lamarche, J. Phys. Org. Chem., 16 (2003) 133.CrossRefGoogle Scholar
  29. 28.
    J. D. Danforth and J. Dix, J. Am. Chem. Soc., 93 (1971) 6843.CrossRefGoogle Scholar
  30. 29.
    Z. Gabelica, R. Hubin and E. G. Derouane, Thermochim. Acta, 24 (1978) 315.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  • A. Koleżyński
    • 1
  • A. Małecki
    • 1
  1. 1.AGH University of Science and Technology, Faculty of Materials Science and CeramicsCracowPoland

Personalised recommendations