Advertisement

Some tetrazolium salts and their ion-association complexes with the molybdenum(VI) — 4-nitrocatechol anionic chelate

DTA and TGA study
  • K. GavazovEmail author
  • V. Lekova
  • B. Boyanov
  • A. Dimitrov
Regular Papers Complexes

Abstract

Several commercially available 2H-tetrazolium salts (TS) {2,3,5-triphenyl-2H-tetrazolium chloride (TTC), 3-(1-naphthyl)-2,5-diphenyl- 2H-tetrazolium chloride (Tetrazolium Violet, TV), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl-2H-tetrazolium chloride (INT) and 3,3′-(3,3′-dimethoxy-4,4′-biphenylene)-bis(2,5-diphenyl- 2H-tetrazolium) chloride (Tetrazolium Blue Chloride, BTC)} and their ion-associated complexes (IAC) with the Mo(VI) — 4-nitrochatechol (4-NC) anionic chelate [MoO2(4-NC)2]2− have been investigated by differential thermal analysis (DTA) and thermogravimetric analysis (TG). Some special features of the thermal behavior of the compounds have been discussed. The results show that the thermal stability of IAC depends on the factors determining the values of their association constants β: molecular mass and the presence of nitrophenyl substituent(s) in the tetrazolium ring.

Keywords

ion-associated complexes 4-nitrocatechol tetrazolium salts thermal decomposition thermal stability 

References

  1. 1.
    W. D. Hooper, Rev. Pure Appl. Chem., 19 (1969) 221.Google Scholar
  2. 2.
    J. C. Palomino, A. Martin and F. Portaels, Clin. Microbiol. Infect., 13 (2007) 754.CrossRefGoogle Scholar
  3. 3.
    M. V. Berridge, P. M. Herst and A. S. Tan, Biotechnol. Annu. Rev., 11(suppl.) (2005) 127.CrossRefGoogle Scholar
  4. 4.
    A. B. Zhivich, G. I. Koldobskii and V. A. Ostrovskii, Khim. Getero. Soedin, 12 (1990) 1587.Google Scholar
  5. 5.
    W. Liu, F. Chaspoul, D. B. Lefrank, L. Decome and P. Gallice, J. Therm. Anal. Cal., 89 (2007) 21.CrossRefGoogle Scholar
  6. 6.
    A. Bakalova, H. Varbanov, R. Buyukliev, G. Motekov and D. Ivanov, J. Therm. Anal. Cal., 95 (2008) 241.CrossRefGoogle Scholar
  7. 7.
    G. I. Koldobskii, Kinet. Catal., 48 (2007) 505.CrossRefGoogle Scholar
  8. 8.
    G. I. Koldobskii, A. B. Zhivich and V. A. Ostrovskii, Zh. Obsch. Khim., 62 (1992) 3.Google Scholar
  9. 9.
    A. B. Zhivich, Yu. E. M’yznikov, G. I. Koldobskii and V. A. Ostrovskii, Zh. Obscht. Khim., 58 (1988) 1906.Google Scholar
  10. 10.
    K. B. Gavazov, A. N. Dimitrov and V. D. Lekova, Usp. Khim., 76 (2007) 187Google Scholar
  11. 11.
    Russ. Chem. Rev., 76 (2007) 169.Google Scholar
  12. 12.
    G. E. A. Mostafa, Talanta, 71 (2007) 1449.CrossRefGoogle Scholar
  13. 13.
    L. N. Moskvin, A. V. Bulatov, E. A. Rudenko, D. V. Navolotskii and G. I. Koldobskii, J. Anal. Chem., 61 (2006) 25.CrossRefGoogle Scholar
  14. 14.
    P. Nigaraja, M. S. Hemantha Kumar and H. S. Yathirajan, Anal. Sci., 18 (2002) 815.CrossRefGoogle Scholar
  15. 15.
    M. N. Abbas, G. E. A. Mostafa and A. M. A. Homoda, Talanta, 55 (2001) 647.CrossRefGoogle Scholar
  16. 16.
    K. Gavazov, Z. Simeonova and A. Alexandrov, Talanta, 52 (2000) 539.CrossRefGoogle Scholar
  17. 17.
    M. Kamburova, Anal. Lett., 31 (1998) 2255.Google Scholar
  18. 18.
    A. Ramesh and M. S. Subramanian, Bull. Chem. Soc. Jpn., 71 (1998) 1025.CrossRefGoogle Scholar
  19. 19.
    KODAK LTD(EAST-C), Great Britain Patents: GB2273506-A and GB2273506-B, 1994.22.06 and 1996.13.03.Google Scholar
  20. 20.
    RICOH KK(RICO-C), Japan Patents: JP61156140-A and JP94061009-B2, 1986.15.07 and 1994.10.08.Google Scholar
  21. 21.
    G. Fischer, G. Holl, T.M. Klapotke and J. J. Weigand, Thermochim. Acta, 437 (2005) 168.CrossRefGoogle Scholar
  22. 22.
    T. M. Klapotke in T. M. Klapotke, Ed., High Energy Density Materials, Ser. Structure and Bonding, Springer, Berlin-Heidelberg 2007, Vol. 125, p. 85.CrossRefGoogle Scholar
  23. 23.
    T. M. Klapotke, K. Karaghiosoff, P. Mayer, A. Penger and J. M. Welch, Propellants, Explos., Pyrotech., 31 (2006) 188.CrossRefGoogle Scholar
  24. 24.
    U. R. Patnaik, T. P. Prasad and J. Muralidhar, J. Thermal Anal., 45 (1995) 1463.CrossRefGoogle Scholar
  25. 25.
    S. G. Kostova and B. S. Boyanov, J. Radioanal. Nucl. Chem., Lett., 200 (1995) 427.CrossRefGoogle Scholar
  26. 26.
    A. N. Dimitrov, V. D. Lekova, K. B. Gavazov and B. S Boyanov, Cent. Eur. J. Chem., 3 (2005) 747.CrossRefGoogle Scholar
  27. 27.
    A. D. Dimitrov, V. D. Lekova, K. B. Gavazov and B. S Boyanov, J. Anal. Chem., 62 (2007) 138.CrossRefGoogle Scholar
  28. 28.
    J. P. Cornard, C. Lapouge and J. C. Merlin, Chem. Phys., 340 (2007) 273.CrossRefGoogle Scholar
  29. 29.
    C. J. Macdonald, Inorg. Chim. Acta, 311 (2000) 33.CrossRefGoogle Scholar
  30. 30.
    A. L. R. Merce, C. Greboge, G. Mendes and A. S. Mangrich, J. Brazil Chem. Soc., 16 (2005) 37.Google Scholar
  31. 31.
    L. Sommer, G. Ackermann, D. Thorburn Burns and S. V. Savvin, Pure Appl. Chem., 62 (1990) 2147.CrossRefGoogle Scholar
  32. 32.
    V. D. Lekova, K. B. Gavazov and A. D. Dimitrov, Chem. Papp., 60 (2006) 283.CrossRefGoogle Scholar
  33. 33.
    A. J. Downard, R. J. Lenihan, S. L. Simpson, B. O’sullivan and K. J. Powell, Anal. Chim. Acta, 345 (1997) 5.CrossRefGoogle Scholar
  34. 34.
    A. A. Soliman, S. M. El-Medani and O. A. M. Ali, J. Therm. Anal. Cal., 83 (2006) 385.CrossRefGoogle Scholar
  35. 35.
    K. B. Gavazov, V. D. Lekova, A. D. Dimitrov and G. I. Patronov, Cent. Eur. J. Chem., 5 (2007) 257.CrossRefGoogle Scholar
  36. 36.
    K. B. Gavazov, M. Türkyilmaz and Ö. Altun, Bulg. Chem. Commun., 40 (2008) 65.Google Scholar
  37. 37.
    L. M. Kovba, I. L. Knunyants, Ed., Khimicheskaya entsiklopediya v pyati tomah, Vol. 2, Bolshaya Rossijskaya Entsiclopediya, Moskow 1992, p. 247.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • K. Gavazov
    • 1
    Email author
  • V. Lekova
    • 1
  • B. Boyanov
    • 2
  • A. Dimitrov
    • 1
  1. 1.Department of General and Inorganic ChemistryPlovdiv UniversityPlovdivBulgaria
  2. 2.Department of Chemical TechnologyPlovdiv UniversityPlovdivBulgaria

Personalised recommendations