Journal of Thermal Analysis and Calorimetry

, Volume 95, Issue 3, pp 743–747 | Cite as

Discontinuous ventilation in the rhinoceros beetle Oryctes nasicornis

Direct and indirect calorimetry
  • I. Lamprecht
  • R. S. Seymour
  • C. R. White
  • P. G. D. Matthews
  • L. Wadsö
Insects and Social Communities


Discontinuous gas exchange cycles (DGCs) are frequently observed with insects, i.e. oxygen take up and carbon dioxide release occur interrupted by periods of a few minutes up to many hours.

The paper presents direct and indirect calorimetric experiments on DGCs of the scarabid rhinoceros beetle Oryctes nasicornis. A direct/indirect calorimetric experiment is presented. Total and specific heat production rates amount to 0.56mWand 0.42mWg−1 in the first period without DGCs and to 0.43 mW (0.32 mW g−1) in the second phase, resp. The mean DGC amplitude is 0.184 mW and thus between 33 and 66% of the total turnover.


calorimetry discontinuous gas exchange cycles (DGC) insects metabolism respirometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. J. Klok, R. D. Mercer and S. L. Chown, J. Exp. Biol., 205 (2002) 1019.Google Scholar
  2. 2.
    J. Buck, M. Keister and H. Specht, Anatom. Record, 117 (1953) 541.Google Scholar
  3. 3.
    E. Marais, C. J. Klok, J. S. Terblanche and S. L. Chown, J. Exp. Biol., 208 (2005) 4495.CrossRefGoogle Scholar
  4. 4.
    C. R. White, T. M. Blackburn, J. S. Terblanche, E. Marais, M. Gibernau and S. L. Chown, Proc. Nat. Acad. Sci. USA, 104 (2007) 8357.CrossRefGoogle Scholar
  5. 5.
    J. R. B. Lighton, Curr. Biol., 17 (2007) R645.CrossRefGoogle Scholar
  6. 6.
    J. R. B. Lighton and R. J. Turner, J. Exp. Biol., 211 (2008) 563.CrossRefGoogle Scholar
  7. 7.
    S. L. Chown and S. W. Nicolson, Oxford University Press, New York 2004.Google Scholar
  8. 8.
    J. R. B. Lighton, J. Insect Physiol., 34 (1988) 361.CrossRefGoogle Scholar
  9. 9.
    J. R. B. Lighton, Annu. Rev. Entomol., 41 (1996) 309.CrossRefGoogle Scholar
  10. 10.
    L. Wadsö, Cement Int., 5 (2005) 94.Google Scholar
  11. 11.
    P. C. Withers, Austr. J. Zool., 49 (2001) 445.CrossRefGoogle Scholar
  12. 12.
    E. M. Gray and T. J. Bradley, J. Exp. Biol., 209 (2006) 3015.CrossRefGoogle Scholar
  13. 13.
    A. Punt, W. J. Paarser and J. Kuchlein, Biol. Bull. Woods Hole, 112 (1957) 108.CrossRefGoogle Scholar
  14. 14.
    H. A. Schneiderman, Anat. Rec., 117 (1953) 540.Google Scholar
  15. 15.
    J. Buck and M. Keister, Biol. Bull. Mar. Biol. Lab., Wood’s Hole, 109 (1955) 144.CrossRefGoogle Scholar
  16. 16.
    P. L. Miller, Locomotion and Energetics in Arthropods, C. F. Herreid, Ed., Plenum Press, New York 1981, p. 367.Google Scholar
  17. 17.
    S. K. Hetz and T. J. Bradley, Nature, 403 (2005) 516.CrossRefGoogle Scholar
  18. 18.
    J. R. B. Lighton, D. A. Garrigan, F. D. Duncan and R. A. Johnson, J. Exp. Biol., 179 (1993) 233.Google Scholar
  19. 19.
    S. L. Chown and A. L. V. Davis, J. Exp. Biol., 206 (2003) 3547.CrossRefGoogle Scholar
  20. 20.
    J. R. B. Lighton, P. E. Schilman and D. A. Holway, J. Exp. Biol., 207 (2004) 4463.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • I. Lamprecht
    • 1
  • R. S. Seymour
    • 2
  • C. R. White
    • 3
  • P. G. D. Matthews
    • 4
  • L. Wadsö
    • 5
  1. 1.Department for Biology, Chemistry, Pharmacy, Institute for ZoologyFree University of BerlinBerlinGermany
  2. 2.Ecology and Evolutionary BiologyThe University of AdelaideAdelaideAustralia
  3. 3.School of Integrative BiologyThe University of QueenslandSt LuciaAustralia
  4. 4.School of Integrative BiologyThe University of QueenslandSt LuciaAustralia
  5. 5.Building MaterialsLund UniversityLundSweden

Personalised recommendations