Journal of Thermal Analysis and Calorimetry

, Volume 95, Issue 3, pp 721–725 | Cite as

Effect of phalloidin on filaments polymerized from heart muscle ADP-actin monomers

  • Andrea Vig
  • Réka Dudás
  • Tünde Kupi
  • J. Orbán
  • G. Hild
  • D. Lőrinczy
  • M. NyitraiEmail author
Biochemical and Pharmaceutical Aspects


The effect of phalloidin on filaments polymerized from ADP-actin monomers of the heart muscle was investigated with differential scanning calorimetry. Heart muscle contains α-skeletal and α-cardiac actin isoforms. In the absence of phalloidin the melting temperature was 55°C for the α-cardiac actin isoform and 58°C for the α-skeletal one when the filaments were generated from ADP-actin monomers. After the binding of phalloidin the melting temperature was isoform independent (85.5°C). We concluded that phalloidin stabilized the actin filaments of α-skeletal and α-cardiac actin isoforms to the same extent when they were polymerized from ADP-actin monomers.


calorimetry cardiac ADP-F-actin isoform phalloidin thermodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. H. Chowdhury, M. R. Popoff and R. Zorec, Pflugers Arch., 439 (2000) R148.CrossRefGoogle Scholar
  2. 2.
    P. Cossart, Curr. Opin. Cell Biol., 7 (1995) 94.CrossRefGoogle Scholar
  3. 3.
    C. Lamaze, L. M. Fujimoto, H. L. Yin and S. L. Schmid, J. Biol. Chem., 272 (1997) 20332.CrossRefGoogle Scholar
  4. 4.
    R. J. Pelham and F. Chang, Nature, 419 (2002) 82.CrossRefGoogle Scholar
  5. 5.
    H. R. Bergen3rd, K. Ajtai, T. P. Burghardt, A. I. Nepomuceno and D. C. Muddiman, Rapid Commun. Mass Spectrom., 17 (2003) 1467.CrossRefGoogle Scholar
  6. 6.
    J. Vandekerckhove, G. Bugaisky and M. Buckingham, J. Biol. Chem., 261 (1986) 1838.Google Scholar
  7. 7.
    J. E. Estes, L. A. Selden, H. J. Kinosian and L. C. Gershman, J. Muscle Res. Cell Motil., 13 (1992) 272.CrossRefGoogle Scholar
  8. 8.
    G. Hild, M. Nyitrai, J. Belágyi and B. Somogyi, Biophys. J., 75 (1998) 3015.CrossRefGoogle Scholar
  9. 9.
    M. Nyitrai, G. Hild, J. Belágyi and B. Somogyi, Biophys. J., 73 (1997) 2023.CrossRefGoogle Scholar
  10. 10.
    M. Nyitrai, G. Hild, J. Belágyi and B. Somogyi, J.Biol. Chem., 274 (1999) 12996.CrossRefGoogle Scholar
  11. 11.
    G. Hild, M. Nyitrai and B. Somogyi, Eur. J. Biochem., 269 (2002) 842.CrossRefGoogle Scholar
  12. 12.
    M. Nyitrai, G. Hild, Z. Lakos and B. Somogyi, Biophys. J., 74 (1998) 2474.CrossRefGoogle Scholar
  13. 13.
    M. Nyitrai, G. Hild, N. Hartvig, J. Belágyi and B. Somogyi, J. Biol. Chem., 275 (2000) 41143.CrossRefGoogle Scholar
  14. 14.
    B. Gaszner, M. Nyitrai, N. Hartvig, T. Kőszegi, B. Somogyi and J. Belágyi, Biochemistry, 38 (1999) 12885.CrossRefGoogle Scholar
  15. 15.
    P. A. Janmey, S. Hvidt, G. F. Oster, J. Lamb, T. P. Stossel and J. H. Hartwig, Nature, 347 (1990) 95.CrossRefGoogle Scholar
  16. 16.
    H. Faulstich, A. J. Schafer and M. Weckauf, Hoppe Seylers Z. Physiol. Chem., 358 (1977) 181.Google Scholar
  17. 17.
    Y. Miyamoto, M. Kuroda, E. Munekata and T. Masaki, J. Biochem., 100 (1986) 1677.Google Scholar
  18. 18.
    M. R. Bubb, I. Spector, B. B. Beyer and K. M. Fosen, J. Biol. Chem., 275 (2000) 5163.CrossRefGoogle Scholar
  19. 19.
    M. R. Bubb, A. M. Senderowicz, E. A. Sausville, K. L. Duncan and E. D. Korn, J. Biol. Chem., 269 (1994) 14869.Google Scholar
  20. 20.
    B. Visegrády, D. Lőrinczy, G. Hild, B. Somogyi and M. Nyitrai, FEBS Lett., 565 (2004) 163.CrossRefGoogle Scholar
  21. 21.
    B. Visegrády, D. Lőrinczy, G. Hild, B. Somogyi and M. Nyitrai, FEBS Lett., 579 (2005) 6.CrossRefGoogle Scholar
  22. 22.
    J. Orbán, D. Lőrinczy, M. Nyitrai and G. Hild, Biochem. Biophys. Res. Commun., 368 (2008) 696.CrossRefGoogle Scholar
  23. 23.
    D. Lőrinczy and J. Belágyi, J. Therm. Anal. Cal., 90 (2007) 611.CrossRefGoogle Scholar
  24. 24.
    D. Lőrinczy, Zs. Vértes, F. Könczöl and J. Belágyi, J. Therm. Anal. Cal., 95 (2009) 721.CrossRefGoogle Scholar
  25. 25.
    R. Dudás, T. Kupi, A. Vig, J. Orbán and D. Lőrinczy, J. Therm. Anal. Cal., 95 (2009) 709.CrossRefGoogle Scholar
  26. 26.
    D. I. Levitsky, M. A. Ponomarev, M. A. Geeves, V. L. Shnyrov and D. J. Manstein, Eur. J. Biochem., 251 (1998) 275.CrossRefGoogle Scholar
  27. 27.
    A. Muhlrad, I. Ringel, D. Pavlov, Y. M. Peyser and E. Reisler, Biophys. J., 91 (2006) 4490.CrossRefGoogle Scholar
  28. 28.
    D. Lőrinczy, F. Könczöl, B. Gaszner and J. Belágyi, Thermochim. Acta, 322 (1998) 95.CrossRefGoogle Scholar
  29. 29.
    G. Feuer, F. Molnár, E. Pettkó and F. B. Straub, Hung. Acta Physiol., 1 (1948) 150.Google Scholar
  30. 30.
    J. A. Spudich and S. Watt, J. Biol. Chem., 246 (1971) 4866.Google Scholar
  31. 31.
    T. W. HoukJr. and K. Ue, Anal. Biochem., 62 (1974) 66.CrossRefGoogle Scholar
  32. 32.
    G. Drewes and H. Faulstich, J. Biol. Chem., 266 (1991) 5508.Google Scholar
  33. 33.
    D. M. L. Ladbury, J. Biocalorimetry 2: Applications of Calorimetry in the Biological Sciences. Ltd. JWS, Editor 2004.Google Scholar
  34. 34.
    J. Orbán, D. Lőrinczy, G. Hild and M. Nyitrai, Biochemistry, 47 (2008) 4530.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Andrea Vig
    • 1
  • Réka Dudás
    • 1
  • Tünde Kupi
    • 1
  • J. Orbán
    • 1
  • G. Hild
    • 1
  • D. Lőrinczy
    • 1
  • M. Nyitrai
    • 1
    Email author
  1. 1.Faculty of Medicine, Department of BiophysicsUniversity of PécsPécsHungary

Personalised recommendations