Advertisement

Lignite humic acids aggregates studied by high resolution ultrasonic spectroscopy

Thermodynamic stability and molecular feature
  • J. KučeríkEmail author
  • H. Čechlovská
  • P. Bursáková
  • M. Pekař
Article

Abstract

The thermodynamic stability of lignite humic acids (sodium salt) aggregates was studied by high resolution ultrasonic spectroscopy within the temperature interval from 5 to 90°C. The changes in differential ultrasonic velocity (U12) showed strong differences among humic solutions within the concentration range from 0.005 to 10 g L−1. Measurement revealed several transitions which were attributed to the weakening of humic secondary structure. Concentration around 1 g L−1 seemed to be a limit under which the change of the prevalence and importance of hydration occurred. Above this concentration the difference in U12 decreased following the temperature increase which was explained as a dominance of hydrophilic hydration. In contrast, below this concentration, the temperature dependence of U12 resulted in increasing tendency which was attributed to the prevalence of hydrophobic hydration, i.e. uncovering of apolar groups towards surrounding water. Additional experiments in which the humic sample was modified by hydrochloric acid resulted in a slight structural stabilization which lead to the conclusion that humic micelle-like subaggregates form an open-layer assemblies easily accessible for interaction with an extraneous molecule. That was partly verified by addition of propionic acid which brought about even larger reconformation of humic aggregates and exhibition of polar groups towards hydration water.

The reversible changes in humate solutions induced by elevated temperatures provided the evidence about the existence of significant physical interactions among humic molecules resulting in formation of various kinds of aggregates. The nature of aggregates, mainly the stability and conformation, strongly depends on the concentration. Evidently, the changes observed in this work cannot be simply explained as expansions or conformational changes of macromolecular coils.

Keywords

aggregation hydrophilic hydration hydrophobic hydration lignite humic acids stability ultrasonic spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Piccolo, Soil Sci., 166 (2001) 810.CrossRefGoogle Scholar
  2. 2.
    J. A. Ferreira, O. R. Nascimento and L. Martin-Neto, Environ. Sci. Technol., 35 (2001) 761.CrossRefGoogle Scholar
  3. 3.
    P. Conte, A. Agretto, R. Spaccini and A. Piccolo, Environ. Pollut., 135 (2005) 515.CrossRefGoogle Scholar
  4. 4.
    R. von Wandruszka, Geochem. Trans., 1 (2000) 10.CrossRefGoogle Scholar
  5. 5.
    R. L. Wershaw, Soil Sci., 164 (1999) 803.CrossRefGoogle Scholar
  6. 6.
    R. R. Engebretson and R. von Wandruszka, Environ. Sci. Technol., 28 (1994) 1934.CrossRefGoogle Scholar
  7. 7.
    R. R. Engebretson, T. Amos and R. von Wandruszka, Environ. Sci. Technol., 30 (1996) 990.CrossRefGoogle Scholar
  8. 8.
    R. von Wandruszka, Soil Sci., 163 (1998) 921.CrossRefGoogle Scholar
  9. 9.
    R. Sutton and G. Sposito, Environ. Sci. Technol., 39 (2005) 9009.CrossRefGoogle Scholar
  10. 10.
    E. Tombácz, Soil Sci., 164 (1999) 814.CrossRefGoogle Scholar
  11. 11.
    P. Conte and A. Piccolo, Developments in Soil Science 28A, A. Violante, P. M. Huang, J. M. Bollang and L. Gianfreda, Eds, Elsevier, Amsterdam, pp 409–418.Google Scholar
  12. 12.
    J. Kučerík, D. Šmejkalová, H. Čechlovská and M. Pekař, Org. Geochem., 38 (2007) 2098.CrossRefGoogle Scholar
  13. 13.
    V. Buckin, E. Kudryashov, S. Morrissey, T. Kapustina and K. Dawson, Prog. Colloid Polym. Sci., 110 (1998) 214.CrossRefGoogle Scholar
  14. 14.
    V. Buckin, E. Kudryashov and S. Morrissey, Int. Labmate, 27 (2002) 23.Google Scholar
  15. 15.
    J. Kučerík, M. Pekař and M. Klučáková, Petroleum Coal, 45 (2003) 58.Google Scholar
  16. 16.
    J. Kučerík, P. Conte, M. Pekař and A. Piccolo, Fresenius Environ. Bull., 7 (2003) 683.Google Scholar
  17. 17.
    J. Kučerík, D. Kamenáářová, D. Válková, M. Pekař and J. Kislinger, J. Therm. Anal. Cal., 84 (2006) 715.CrossRefGoogle Scholar
  18. 18.
    D. Válková, J. Kislinger, M. Pekař and J. Kučerík. J. Therm. Anal. Cal., 89 (2007) 957.CrossRefGoogle Scholar
  19. 19.
    J. Peuravuori, P. Žbánková and K. Pihlaja, Fuel Process. Technol., 87 (2006) 829.CrossRefGoogle Scholar
  20. 20.
    N. Fasurová, H. Čechlovská and J. Kučerík, Petroleum and Coal, 48 (2006) 39.Google Scholar
  21. 21.
    G. Venktaramana, E. Rajagopal and N. Manohara Murthy, J. Mol. Liquids, 123 (2006) 68.CrossRefGoogle Scholar
  22. 22.
    M. Klučáková and M. Pekař, Colloids Surf. A, 252 (2005) 157.CrossRefGoogle Scholar
  23. 23.
    A. P Sarwazyan, Annu. Rev. Biophys. Biophys. Chem., 20 (1991) 321.CrossRefGoogle Scholar
  24. 24.
    V. Buckin and B. O’Driscoll, Lab. Plus International, 16 (2002) 17.Google Scholar
  25. 25.
    E. Kurdyashov, T. Kapustina, S. Morrissey, V. Buckin and K. Dawson, J. Colloid Interface Sci., 203 (1998) 59.CrossRefGoogle Scholar
  26. 26.
    A. J. Rowe, Biophys. Chem., 93 (2001) 93.CrossRefGoogle Scholar
  27. 27.
    J. N. Israelashvili, Intermolecular and Surface Forces, Academic Press, 1993.Google Scholar
  28. 28.
    V. Buckin, E. Kudryashov and B. O’Driscoll, Am. Lab., 28 (2002) 30.Google Scholar
  29. 29.
    C. Smyth, K. Dawson and V. Buckin, Progr. Colloid Polym. Sci., 112 (1999) 221.CrossRefGoogle Scholar
  30. 30.
    V. V. Yaminsky and E. A. Vogler, Curr. Opin. Colloid Interface Sci., 6 (2001) 342.CrossRefGoogle Scholar
  31. 31.
    V. Gutmann, Pure Appl. Chem., 63 (1991) 1715.CrossRefGoogle Scholar
  32. 32.
    N. E. Palmer and R. von Wandruszka Fresenius, J. Anal. Chem., 371 (2001) 951.CrossRefGoogle Scholar
  33. 33.
    R. S. Swift, Soil Sci., 164 (1999) 790.CrossRefGoogle Scholar
  34. 34.
    J. Peuravuori, Environ. Sci. Technol., 39 (2005) 5541.CrossRefGoogle Scholar
  35. 35.
    J. Peuravuori and K. Pihlaja, Environ. Sci. Technol., 38 (2004) 5958.CrossRefGoogle Scholar
  36. 36.
    D. Šmejkalová and A. Piccolo, Environ. Sci. Technol., 42 (2008) 699.CrossRefGoogle Scholar
  37. 37.
    V. Shrinivas, G. A. Rodley, K. Ravikumar, W. T. Robinson, M. M. Turnbull and D. Balasubramanian, Langmuir, 13 (1997) 3235.CrossRefGoogle Scholar
  38. 38.
    J. W. Steed and J. L. Atwood, Supramolecular Chemistry, Wiley, 2005.Google Scholar
  39. 39.
    D. Balasubramanian, V. Srinivas, V. G. Gaikar and M. M. Sharma, J. Phys. Chem., 93 (1989) 3865.CrossRefGoogle Scholar
  40. 40.
    S. Nardi, A. Muscolo, S. Vaccaro, S. Baiano, R. Spaccini and A. Piccolo, Soil Biol. Biochem., 39 (2007) 3138.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • J. Kučerík
    • 1
    Email author
  • H. Čechlovská
    • 1
  • P. Bursáková
    • 1
  • M. Pekař
    • 1
  1. 1.Faculty of ChemistryBrno University of TechnologyBrnoCzech Republic

Personalised recommendations