Journal of Thermal Analysis and Calorimetry

, Volume 94, Issue 2, pp 441–445 | Cite as

Thermal behavior of Cd2+ and Co2+ phenyl-vinyl-phosphonates under non-isothermal condition

  • N. Doca
  • Gabriela Vlase
  • T. Vlase
  • G. Ilia


The thermal behavior of Cd2+ and Co2+ phenyl-vinyl-phosphonates was studied using two different experimental strategies: the coupled TG-EGA (FTIR) technique by decomposition in nitrogen respectively air, and the kinetic analysis of TG data obtained in dynamic air atmosphere at four heating rates. In nitrogen two decomposition steps were observed: the loss of crystallization water, respectively the decomposition of the phenyl-vinyl radical. In air, the same dehydration was observed as the first step, but the second one is a thermooxidation of the organic radical with formation of the pyrophosphoric anion.

The kinetic analysis of the TG non-isothermal data was performed by the isoconversional methods suggested by Friedman and Flynn, Wall and Ozawa, as well as by the non-parametric (Sempere-Nomen) method. All processes put in evidence in TG curves exhibit strong changes of the activation energy values with the conversion degree, which mean that these processes are complex ones. Assuming that each of these processes consists in two steps, the application of non-parametric method leads to average values of the activation energy close to the average values of this parameter obtained by isoconversional methods.


coupled TG-EGA FTIR spectra metal phosphonates non-isothermal kinetics NPK method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Clearfield, Progres in Inorganic Chemistry, K. D. Karbin, Ed., John Wiley and Sons, NY 1998, Vol. 47, p. 371.Google Scholar
  2. 2.
    B. Bujoli, P. Palvadeau and J. Rouxel, Chem. Mater., 2 (1990) 582.CrossRefGoogle Scholar
  3. 3.
    D. M. Poojary, Y. P. Zhang, B. Zhang and A. Clearfield, Chem. Mater., 7 (1995) 822.CrossRefGoogle Scholar
  4. 4.
    D. Grohol, M. A. Subramanian, M. A. Poojary and A. Clearfield, Inorg. Chem., 35 (1996) 5264.CrossRefGoogle Scholar
  5. 5.
    G. Cao, H. Lee, V. M. Lynch, I. S. Swinnea and T. E. Mallouk, Inorg. Chem., 27 (1988) 2781.CrossRefGoogle Scholar
  6. 6.
    G. Cao, H. Lee, V. M. Lynch, I. S. Swinnea and T. E. Mallouk, Inorg. Chem., 29 (1990) 2112.CrossRefGoogle Scholar
  7. 7.
    A. Cabeza, M. A. G. Aranda, S. Bruque, M. D. Poojary, A. Clearfield and I. Sanz, Inorg. Chem., 37 (1998) 4168.CrossRefGoogle Scholar
  8. 8.
    I. Le. Bideau, C. Payen, P. Palvadeau and B. Buyoli, Inorg. Chem., 33 (1994) 4885.CrossRefGoogle Scholar
  9. 9.
    S. Drumel, P. Jonvier, D. Deniaud and B. Buyoli, I. Chem. Soc., Chem. Commun., (1995) 1051.Google Scholar
  10. 10.
    R. M. Silverstein, G. Clayton Basster and T. Morrell, ’Spectrometric Identification of the Compounds’, 5th Ed., John Wiley, 1995.Google Scholar
  11. 11.
    I. H. Flynn and L. A. Wall, Polym. Lett., 4 (1966) 323.CrossRefGoogle Scholar
  12. 12.
    T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.CrossRefGoogle Scholar
  13. 13.
    H. L. Friedman, J. Polym. Sci., 6C (1965) 183.Google Scholar
  14. 14.
    R. Serra, R. Nomen and J. Sempere, J. Therm. Anal. Cal., 52 (1998) 933.CrossRefGoogle Scholar
  15. 15.
    R. Serra, J. Sempere and R. Nomen, Thermochim. Acta, 316 (1998) 37.CrossRefGoogle Scholar
  16. 16.
    J. Sempere, R. Nomen and R. Serra, J. Therm. Anal. Cal., 56 (1999) 843.CrossRefGoogle Scholar
  17. 17.
    P. Budrugeac, D. Homentcovschi and E. Segal, J. Therm. Anal. Cal., 66 (2001) 557.CrossRefGoogle Scholar
  18. 18.
    P. Budrugeac and E. Segal, Int. J. Chem. Kinet., 33 (2001) 564.CrossRefGoogle Scholar
  19. 19.
    T. Vlase, G. Vlase, N. Doca and C. Bolcu, J. Therm. Anal. Cal., 80 (2005) 59.CrossRefGoogle Scholar
  20. 20.
    T. Vlase, G. Vlase, M. Doca and N. Doca, J. Therm. Anal. Cal., 80 (2005) 207.CrossRefGoogle Scholar
  21. 21.
    T. Vlase, G. Vlase and N. Doca, J. Therm. Anal. Cal., 80 (2005) 425.CrossRefGoogle Scholar
  22. 22.
    T. Vlase, G. Vlase, N. Birta and N. Doca, J. Therm. Anal. Cal., 88 (2007) 631.CrossRefGoogle Scholar
  23. 23.
    M. E. Wall, Singular value decomposition and principal component analysis, A practical approach to microarray data analysis, 9. 91-109, Kluwer-Norwel, MA (2003). LANL LA-UR-02.Google Scholar
  24. 24.
    J. Šesták and G. Berggren, Thermochim. Acta, 3 (1971).Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.West University of Timişoara, Research Center for Thermal Analysis in Environmental ProblemsTimişoaraRomania
  2. 2.Institute of ChemistryTimişoaraRomania

Personalised recommendations