Journal of Thermal Analysis and Calorimetry

, Volume 93, Issue 1, pp 231–237 | Cite as

Prediction of the ageing of rubber using the chemiluminescence approach and isoconversional kinetics

  • F. Käser
  • B. Roduit


A common scepticism towards the application of many product formulations results from the fact that their long-term stability is difficult to predict. In the present study we report on a new approach of kinetic analysis of the oxidation reactions of natural rubbers with and without stabiliser in an oxygen atmosphere at moderate temperatures using CL measurements carried out on a newly-developed instrumentation. The kinetic parameters of the oxidation process, calculated from the chemiluminescence’s signals by means of the differential isoconversional method of Friedman, were subsequently applied for the simulation of the rubber aging under different temperature profiles. The presented results are the first stage of research by using the chemiluminescence method to measure the oxidative aging of rubber and predicting the life time of rubber items.


chemiluminescence isoconversional kinetics lifetime prediction oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Feller, Accelerated Ageing, The Getty Conservation Institute, Marina del Rey 1994.Google Scholar
  2. 2.
    H. Zweifel., Plastic Additives Handbook, Verlag Carl Hanser, München 2001.Google Scholar
  3. 3.
    J. Scheirs, Compositional and Failure Analysis of Polymers, John Wiley & Sons, Chichester 2000.Google Scholar
  4. 4.
    J. Pauquet, R. Todesco and W. Drake, 42nd Int. Wire & Cable Symp, St. Louis 1993, p. 77.Google Scholar
  5. 5.
    E. Kramer and J. Koppelmann, Polym. Eng. Sci., 27 (1987) 945.CrossRefGoogle Scholar
  6. 6.
    F. Gugumus, Developments in Polymer Stabilisation — 8, G. Scott, Ed., Elsevier, London 1987, p. 239.Google Scholar
  7. 7.
    O.-A. Neumüller, Römpps Chemie-Lexikon, 8th Ed., Franckh’sche Verlagshandlung, Stuttgart 1979–1988.Google Scholar
  8. 8.
    B. Radziszewski, Ber. D. Chem. Ges., 10 (1877) 70.CrossRefGoogle Scholar
  9. 9.
    L. Zlatkevich, J. Polym. Sci. B, Polym. Phys., 28 (1990) 425.CrossRefGoogle Scholar
  10. 10.
    M. Celina and G. George, Polym. Degrad. Stab., 40 (1993) 323.CrossRefGoogle Scholar
  11. 11.
    L. Matisová-Rychlá and J. Rychly, J. Polym. Sci., 42 (2004) 648.Google Scholar
  12. 12.
    D. Lacey and V. Dudler, Polym. Degrad. Stab., 51 (1996) 101.CrossRefGoogle Scholar
  13. 13.
    G. Russel, J. Am. Chem. Soc., 79 (1957) 3871.CrossRefGoogle Scholar
  14. 14.
    R. Vasiliev, Prog. React. Kinet., 4 (1967) 305.Google Scholar
  15. 15.
    L. Reich and S. Stivala, Makromol. Chem., 103 (1967) 74.CrossRefGoogle Scholar
  16. 16.
    E. Quinga and G. Mendenhall, J. Am. Chem. Soc., 105 (1983) 6520.CrossRefGoogle Scholar
  17. 17.
    N. Billingham and E. Then, Polym. Degrad. Stab., 34 (1991) 263.CrossRefGoogle Scholar
  18. 18.
    L. Audouin V. Bellenger, A. Tcharkhtchi and J. Verdu, Polymer Durability, R. Clough, N. Billingham and K. Gillen, Eds. American Chemical Society, Washington DC 1996, pp. 223–234.Google Scholar
  19. 19.
    J. Pospišil, Z. Horák, J. Pilař, N. Billingham, H. Zweifel and S. Nešpůrek, Polym. Degrad. Stab., 82 (2003) 156.Google Scholar
  20. 20.
    M. E. Brown, M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, A. Burnham, J. Opfermann, R. Strey, H. L. Anderson, A. Kemmler, R. Keuleers, J. Janssens, H. O. Desseyn, C.-R. Li, T. B. Tang, B. Roduit, J. Malek and T. Mitsuhashi, Thermochim. Acta, 355 (2000) 125.CrossRefGoogle Scholar
  21. 21.
    M. Maciejewski, Thermochim. Acta, 355 (2000) 145.CrossRefGoogle Scholar
  22. 22.
    A. K. Burnham, Thermochim. Acta, 355 (2000) 165.CrossRefGoogle Scholar
  23. 23.
    B. Roduit, Thermochim. Acta, 355 (2000) 171.CrossRefGoogle Scholar
  24. 24.
    H. L. Friedman, J. Polym. Sci., C, (1965) 185.Google Scholar
  25. 25.
    T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.CrossRefGoogle Scholar
  26. 26.
    J. H. Flynn and L. A. Wall, Polym. Lett., 4 (1966) 323.CrossRefGoogle Scholar
  27. 27.
    P. Budrugeac, J. Therm. Anal. Cal., 68 (2002) 131.CrossRefGoogle Scholar
  28. 28.
    Advanced Kinetics and Technology Solutions Inc. Siders, Switzerland,

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.ACL Instruments AGKerzersSwitzerland
  2. 2.Berne University of the ArtsBerneSwitzerland
  3. 3.AKTS AGSidersSwitzerland

Personalised recommendations