Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 93, Issue 1, pp 163–173 | Cite as

Advanced kinetics-based simulation of time to maximum rate under adiabatic conditions

  • B. Roduit
  • W. Dermaut
  • A. Lunghi
  • P. Folly
  • B. Berger
  • A. Sarbach
Article

Abstract

An adiabatic calorimeter is very often used for the investigation of runaway of exothermic reactions. However the ideal adiabatic environment is a theoretical state which during laboratory scale testing cannot be obtained but may only be approached. Deviation from the fully adiabatic state comes from (i) the thermal inertia of the test system or heat lost into the sample container and (ii) the loss of heat from the container itself to the environment that reflects the ‘operational adiabaticity’ of the instrument. In addition to adiabatic testing, advanced kinetic approach based on the kinetic parameters determined from DSC data performed under different heating rates can be applied. It enables to simulate what may happen on a large scale by testing and up-scaling results obtained with a small amount of the sample.

The present study describes the method of the evaluation of kinetic parameters of the coupling reaction of aniline with cyanamide in water/HCl from the DSC signals measured in non-isothermal experiments carried out with the rates of 0.5–8 K min−1. The reaction rate and reaction progress in adiabatic conditions were predicted after introducing the kinetic description of the reaction into the heat balance equations. It enabled to calculate the thermal safety diagram depicting the runaway time as a function of the process temperature. The influence of thermal inertia of the system, expressed by the Φ-factor, on the reaction course in concentrated and diluted reactant solutions was determined and discussed.

Keywords

adiabatic conditions aniline cyanamide DSC Φ-factor thermal decomposition kinetics thermal runaway time to maximum rate (TMR) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Advanced Kinetics and Technology Solutions: http://www.akts.com (AKTS-Thermokinetics software and AKTS-Thermal Safety software)
  2. 2.
    Swiss Institute of Safety and Security: http://www.swissi.ch/index.cfm?rub=1010.
  3. 3.
    W. F. Hemminger and S. M. Sarge, J. Thermal Anal., 37 (1991) 1455.CrossRefGoogle Scholar
  4. 4.
    B. Roduit, Ch. Borgeat, B. Berger, P. Folly, B. Alonso, J. N. Aebischer and F. Stoessel, J. Therm. Anal. Cal., 80 (2005) 229.CrossRefGoogle Scholar
  5. 5.
    M. E. Brown, J. Therm. Anal. Cal., 82 (2005) 665.CrossRefGoogle Scholar
  6. 6.
    M. Maciejewski, Thermochim. Acta, 355 (2000) 145.CrossRefGoogle Scholar
  7. 7.
    M. E. Brown, M. Maciejewski, S. Vyazovkin, R. Nomen, J. Sempere, A. Burnham, J. Opfermann, R. Strey, H. L. Anderson, A. Kemmler, R. Keuleers, J. Janssens, H. O. Desseyn, C.-R. Li, T. B. Tang, B. Roduit, J. Malek and T. Mitsuhashi, Thermochim. Acta, 355 (2000) 125.CrossRefGoogle Scholar
  8. 8.
    A. Burnham, Thermochim. Acta, 355 (2000) 165.CrossRefGoogle Scholar
  9. 9.
    B. Roduit, Thermochim. Acta, 355 (2000) 171.CrossRefGoogle Scholar
  10. 10.
    H. L. Friedman, J. Polym. Sci, Part C, Polymer Symposium (6PC), 183 (1964).Google Scholar
  11. 11.
    T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.CrossRefGoogle Scholar
  12. 12.
    J. H. Flynn and L. A. Wall, J. Res. Nat. Bur. Standards, 70A (1966) 487.Google Scholar
  13. 13.
    S. Vyazovkin, J. Comput. Chem., 22 (2001) 178.CrossRefGoogle Scholar
  14. 14.
    ASTM Standard E 698, 1999 (2005), ’Standard Test method for Arrhenius Kinetic Constants for Thermally Unstable Materials’, ASTM International, West Conshohocken, PA, www.astm.org.
  15. 15.
    P. Budrugeac, J. Therm. Anal. Cal., 68 (2002) 131.CrossRefGoogle Scholar
  16. 16.
    A. Keller, D. Stark, H. Fierz, E. Heinzle and K. Hungerbüler, J. Loss Prev. Process Ind., 10 (2000) 31.CrossRefGoogle Scholar
  17. 17.
    J. Pastré, U. Wörsdörfer, A. Keller and K. Hungerbühler, J. Loss Prev. Process Ind., 13 (2000) 7.CrossRefGoogle Scholar
  18. 18.
    B. Roduit, C. Borgeat, B. Berger, P. Folly, H. Andres, U. Schädeli and B. Vogelsanger, J. Therm. Anal. Cal., 85 (2006) 195.CrossRefGoogle Scholar
  19. 19.
    D. I. Townsend and J. C. Tou, Thermochim. Acta, 37 (1980) 1.CrossRefGoogle Scholar
  20. 20.
    E. Wilcock and R. L. Rogers, J. Loss Prev. Process Ind., 10 (1997) 289.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • B. Roduit
    • 1
  • W. Dermaut
    • 2
  • A. Lunghi
    • 3
  • P. Folly
    • 4
  • B. Berger
    • 4
  • A. Sarbach
    • 4
  1. 1.AKTS AG Advanced Kinetics and Technology SolutionsSidersSwitzerland
  2. 2.Janssen Pharmaceutica NVBeerseBelgium
  3. 3.Stazione Sperimentale per i CombustibiliSan Donato MilaneseItaly
  4. 4.armasuisse, Science and TechnologyThunSwitzerland

Personalised recommendations