Journal of Thermal Analysis and Calorimetry

, Volume 93, Issue 1, pp 143–152

The simulation of the thermal behavior of energetic materials based on DSC and HFC signals

  • B. Roduit
  • L. Xia
  • P. Folly
  • B. Berger
  • J. Mathieu
  • A. Sarbach
  • H. Andres
  • M. Ramin
  • B. Vogelsanger
  • D. Spitzer
  • H. Moulard
  • D. Dilhan
Article

Abstract

Two small calibre and four medium calibre types of propellants were investigated non-isothermally (0.25–4K min−1) by differential scanning calorimetry (DSC) in the range of RT-260°C and isothermally (60–100°C) by heat flow calorimetry (HFC). The data obtained from both techniques were used for the calculation and comparison of the kinetic parameters of the decomposition process. The application of HFC allowed to determine the kinetic parameters of the very early stage of the reaction (reaction progress α below 0.02) what, in turn, made possible the precise prediction of the reaction progress under temperature mode corresponding to real atmospheric changes according to STANAG 2895. In addition, the kinetic parameters obtained from DSC data enabled determination of self-accelerating decomposition temperature (SADT) and comparison of the predicted ignition temperature during slow cook-off with the experimental results. The study contains also the results of the calculation of the time to maximum rate (TMRad) of the propellants under adiabatic conditions.

Keywords

adiabatic conditions cook-off DSC energetic materials HFC SADT thermal decomposition kinetics TMRad time to maximum rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. F. Hemminger and S. M. Sarge, J. Thermal Anal., 37 (1991) 1455.CrossRefGoogle Scholar
  2. 2.
    Swiss Institute of Safety and Security, http://www.swissi.ch/index.cfm?rub=1010.
  3. 3.
    Advanced Kinetics and Technology Solutions, http://www.akts.com (AKTS-Thermokinetics software and AKTS-Thermal Safety software).
  4. 4.
    B. Roduit, C. Borgeat, B. Berger, P. Folly, H. Andres, U. Schädeli and B. Vogelsanger, J. Therm. Anal. Cal., 85 (2006) 195.CrossRefGoogle Scholar
  5. 5.
    H. L. Friedman, J. Polym. Sci, Part C, Polymer Symposium (6PC), 183 (1964).Google Scholar
  6. 6.
    T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.CrossRefGoogle Scholar
  7. 7.
    J. H. Flynn and L. A. Wall, J. Res. Nat. Bur. Standards, 70A (1966), 487.Google Scholar
  8. 8.
    S. Vyazovkin, J. Comput. Chem., 22 (2001) 178.CrossRefGoogle Scholar
  9. 9.
    ASTM Standard E 698, 1999 (2005), ’Standard Test method for Arrhenius Kinetic Constants for Thermally Unstable Materials’, ASTM International, West Conshohocken, PA, www.astm.org.Google Scholar
  10. 10.
    C. D. Doyle, J. Appl. Polym. Sci., 6 (1962) 639.CrossRefGoogle Scholar
  11. 11.
    P. Budrugeac, J. Therm. Anal. Cal., 68 (2002) 131.CrossRefGoogle Scholar
  12. 12.
    STANAG 2895 (1990), Extreme climatic conditions and derived conditions for use in defining design/test criteria for NATO forces material, http://www.nato.int/docu/stanag/2895/2895.pdf.
  13. 13.
    2003, Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria, 4 revised edition, United Nations, ST/SG/AC.10/11/Rev.4 (United Nations, New York and Geneva).Google Scholar
  14. 14.
    2003, Globally Harmonized System of Classification and Labelling of Chemicals (GHS), United Nations, New York and Geneva.Google Scholar
  15. 15.
    B. Roduit, P. Folly, B. Berger, J. Mathieu, A. Sarbach, H. Andres, M. Ramin and B. Vogelsanger, NATAS 2007 Proc. 35th Annual Conference, Evaluating SADT by using advanced kinetics-based simulation approach, East Lansing, Michigan, August 2007.Google Scholar
  16. 16.
    B. Roduit, W. Dermaut, A. Lunghi, P. Folly, B. Berger and A. Sarbach, NATAS 2007 Proc. 35th Annual Conference, Advanced kinetics-based simulation method for determination of the time to maximum rate under adiabatic conditions (TMRad), East Lansing, Michigan, August 2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • B. Roduit
    • 1
  • L. Xia
    • 1
  • P. Folly
    • 2
  • B. Berger
    • 2
  • J. Mathieu
    • 2
  • A. Sarbach
    • 2
  • H. Andres
    • 3
  • M. Ramin
    • 3
  • B. Vogelsanger
    • 3
  • D. Spitzer
    • 4
  • H. Moulard
    • 4
  • D. Dilhan
    • 5
  1. 1.AKTS AG Advanced Kinetics and Technology SolutionsSidersSwitzerland
  2. 2.armasuisse, Science and TechnologyThunSwitzerland
  3. 3.Nitrochemie Wimmis AGWimmisSwitzerland
  4. 4.ISL, Institut franco-allemand de recherches de Saint-LouisSaint LouisFrance
  5. 5.CNES Centre National d’Etudes SpatialesToulouseFrance

Personalised recommendations