Journal of Thermal Analysis and Calorimetry

, Volume 93, Issue 2, pp 343–351 | Cite as

Transitions among five polymorphs of chlorpropamide near the melting point

  • V. A. Drebushchak
  • Tatiana N. Drebushchak
  • N. V. Chukanov
  • Elena V. Boldyreva
Article

Abstract

Five polymorphs of chlorpropamide (α, β, δ, γ, and ε) were investigated near the melting point by using DSC. Structure of samples was tested by X-ray powder diffraction. Four first polymorphs were found to transform into ε-polymorph, which melts at Tm=128°C, ΔmH=24 kJ mol−1. Enthalpy of the polymorph transitions ranges from +3 kJ mol−1 for α→ε to −0.8 kJ mol−1 for β→ε.

Structure of three first polymorphs was published elsewhere, and the structure of δ-polymorph is published for the first time. XRPD patterns for all polymorphs are reported, together with the atomic coordinates for the δ-polymorph.

Keywords

calorimetry chlorpropamide polymorphs structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. L. Simmons, R. J. Ranz and N. D. Guanchandani, Can. J. Pharm. Sci., 8 (1973) 125.Google Scholar
  2. 2.
    S. S. Al-Saieq and G. R. Riley, Pharm. Acta Helv., 57 (1982) 8.Google Scholar
  3. 3.
    H. Ueda, N. Nambu and T. Nagai, Chem. Pharm. Bull., 32 (1984) 244.Google Scholar
  4. 4.
    C. Vemavarapu, M.J. Mollan and T.E. Needham, AAPS PharmSciTech; 3 (2002) article 29 (http://www.aapspharmsci.org).
  5. 5.
    Y. Sonoda, F. Hirayama, H. Arima and K. Uekama, J. Incl. Phenom. Macro., 50 (2004) 73.CrossRefGoogle Scholar
  6. 6.
    J. Bernstein, Polymorphism in Molecular Crystals. Oxford Univ. Press, Oxford, 2002, p. 424.Google Scholar
  7. 7.
    J. D. Dunitz and J. Bernstein, Acc. Chem. Res., 28 (1995) 193.CrossRefGoogle Scholar
  8. 8.
    R. Barbas, R. Prohens and C. Puigjaner, J. Therm. Anal. Cal., 89 (2007) 687.CrossRefGoogle Scholar
  9. 9.
    D. Giron, S. Monnier, M. Mutz, P. Piechon, T. Buser, F. Stowasser, K. Schulze and M. Bellus, J. Therm. Anal. Cal., 89 (2007) 729.CrossRefGoogle Scholar
  10. 10.
    F. N. Allen, Acta Cryst., B58 (2002) 380.Google Scholar
  11. 11.
    C. H. Koo, S. I. Cho and Y. H. Yeon, Arch. Pharmacol. Res., 3 (1980) 37.CrossRefGoogle Scholar
  12. 12.
    T. N. Drebushchak, N. V. Chukanov and E. V. Boldyreva, Acta Cryst., E62 (2006) o4393.Google Scholar
  13. 13.
    T. N. Drebushchak, N. V. Chukanov and E. V. Boldyreva, Acta Cryst., C63 (2007) o355.Google Scholar
  14. 14.
    P. L. D. Wildfong, K. R. Morris, C. A. Anderson and S. M. Short, J. Pharm. Sci., 96 (2007) 1100.CrossRefGoogle Scholar
  15. 15.
    E. Yonemochi, Y. Yoshioka, Y. Yoshihashi and K. Terada, J. Therm. Anal. Cal., 85 (2006) 693.CrossRefGoogle Scholar
  16. 16.
    G. M. Sheldrick, (1997) SHELX97. University of Göttingen, Germany.Google Scholar
  17. 17.
    M. L. P. Leitão, J. Canotilho, M. S. C. Cruz, J. C. Pereira, A. T. Sousa and J. S. Redinha, J. Therm. Anal. Cal., 68 (2002) 397.CrossRefGoogle Scholar
  18. 18.
    M. M. De Villiers and D. E. Wurster, Acta Pharm., 49 (1999) 79.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • V. A. Drebushchak
    • 1
    • 2
  • Tatiana N. Drebushchak
    • 1
    • 3
  • N. V. Chukanov
    • 1
    • 4
  • Elena V. Boldyreva
    • 1
    • 3
  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Institute of Geology and Mineralogy SB RASNovosibirskRussia
  3. 3.Institute of Solid State Chemistry and Mechanochemistry, SB RASNovosibirskRussia
  4. 4.Novosibirsk Institute of Organic Chemistry, SB RASNovosibirskRussia

Personalised recommendations