Three-phase cyanate ester composites with fumed silica and negative-CTE reinforcements



Three-phase cyanate ester adhesives have been developed using a bisphenol E cyanate ester resin, fumed silica, and negative-CTE (coefficient of thermal expansion) reinforcements: short carbon fiber or zirconium tungstate (ZrW2O 8 ). Fumed silica was used to impart thixotropic behavior on the resin and decrease settling in the adhesives. The cured composites were evaluated using various thermal analysis techniques for their thermal-mechanical properties.

Composites with short carbon fiber showed enhanced modulus and decreased thermal expansion (70% reduction for 20 vol%) and showed little phase separation. While settling of the dense ceramic particles could not be completely eliminated for the zirconium tungstate composites through rheological modification of the adhesive with added fumed silica, a reduction in CTE of 84% was achieved in the composite (58 vol%) compared to the neat resin. In addition, the effect of thermal history on the cure and temperature induced ZrW2O8 phase transitions, and their corresponding influence on thermal strains vs. temperature, are examined by thermomechanical analysis.


composites negative thermal expansion thermal expansion thermomechanical analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Shimp and W. M. Craig, Jr., Proc. of the 34th Annual Int. SAMPE Symp., 1989, pp. 1336–1346.Google Scholar
  2. 2.
    W. K. Goertzen and M. R. Kessler, Compos. Part A-Appl. S., 38 (2007) 779.CrossRefGoogle Scholar
  3. 3.
    J. Wen and D. Bryant, Adhes. Seal. Ind., 6 (1999) 48.Google Scholar
  4. 4.
    CAB-O-SIL® M-5 Product Technical Data. Billerica, MA: Cabot Corp., 2000.Google Scholar
  5. 5.
    W. K. Goertzen and M. R. Kessler, Compos. Part A-Appl. S., in press.Google Scholar
  6. 6.
    W. K. Goertzen and M. R. Kessler, J. Appl. Polym.Sci., in press.Google Scholar
  7. 7.
    W. K. Goertzen and M. R. Kessler, Polym. Eng. Sci., in press.Google Scholar
  8. 8.
    C. Kaynak, O. Orgun and T. Tincer, Polym. Test., 24 (2005) 455.CrossRefGoogle Scholar
  9. 9.
    X. Gong, Polym. Adv. Technol., 7 (1996) 141.CrossRefGoogle Scholar
  10. 10.
    M. Y. Jeong and D.G. Lee, J. Mater. Process. Technol., 63 (1997) 375.CrossRefGoogle Scholar
  11. 11.
    A. W. Sleight, Annu. Rev. Mater. Sci., 28 (1998) 29.CrossRefGoogle Scholar
  12. 12.
    J. S. O. Evans, J. D. Jorgensen, S. Short, W. I. David, R. M. Ibberson and A. W. Sleight, Phys. Rev. B, 60 (1999) 14643.Google Scholar
  13. 13.
    F. R. Drymiotis, H. Ledbetter, J. B. Betts, T. Kimura, J. C. Lashley, A. Migliori, A. P. Ramirez, G. R. Kowach and J. Van Duijn, Phys. Rev. Lett., 93 (2004) 025502-1.Google Scholar
  14. 14.
    J. D. Shi, Z. J. Pu, K.-H. Wu and G. Larkins, Proc. Mat. Res. Soc. Symp., 1997, pp. 229–234.Google Scholar
  15. 15.
    W. C. Weyer, W. M. Cross, B. Henderson, J. J. Kellar, L. Kjerengtroen, J. Welsh and J. Starkovich, Proc. 46th AIAA/ASME/ASCE/AHS/ASC Conf., 2005, pp. 3577–3593.Google Scholar
  16. 16.
    L. M. Sullivan and C. M. Lukehart, Chem. Mater., 17 (2005) 2136.CrossRefGoogle Scholar
  17. 17.
    W. M. Cross, B. D. Henderson, W. C. Weyer, C. Kroetch, L. Kjerengtroen, J. Welsh and J. J. Kellar, Proc. SME — Func. Fill. and Nanoscale Min., 2006, pp. 127–140.Google Scholar
  18. 18.
    AEROSIL® Product Technical Information, Germany, Degussa, Frankfurt 2006.Google Scholar
  19. 19.
    G. W. Ehrenstien, G. Riedel and P. Trawiel, Therm. Anal. of Plast.: Theory and Pract., Carl Hanser Verlag, Munich 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIowa State UniversityAmesUSA

Personalised recommendations