Journal of Thermal Analysis and Calorimetry

, Volume 92, Issue 2, pp 589–594

Dynamic and controlled rate thermal analysis of attapulgite

  • Veronika Vágvölgyi
  • Lisa M. Daniel
  • Caroline Pinto
  • J. Kristóf
  • R. L. Frost
  • Erzsébet Horváth
Regular Papers Organics/Polymers

Abstract

The thermal decomposition of the clay mineral attapulgite has been studied using a combination of dynamic and controlled rate thermal analysis. In the dynamic experiment two dehydration steps are observed over the 20–114 and 114–201°C temperature range. In the dynamic experiment three dehydroxylation steps are observed over the temperature ranges 201–337, 337–638 and 638–982°C. The CRTA technology enables the separation of the thermal decomposition steps. Calculations show the amount of water in the attapulgite mineral is variable. Dehydration in the CRTA experiment occurs as quasi-isothermal equilibria. Dehydroxylation occurs as a series of non-isothermal decomposition steps. CRTA technology offers better resolution and a more detailed interpretation of the decomposition processes of a clay mineral such as attapulgite via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition. Constant-rate decomposition processes of non-isothermal nature reveal partial collapse of the layers of attapulgite as the attapulgite is converted to an anhydride.

Keywords

attapulgite CRTA palygorskites sepiolite thermal analysis thermogravimetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Aramendia, V. Borau, J. I. Corredor, C. Jimenez, J. M. Marinas, J. R. Ruiz and F. J. Urbano, J. Colloid Interface Sci., 227 (2000) 469.CrossRefGoogle Scholar
  2. 2.
    T. Fernandez Alvarez, Proc. Int. Clay Conf., (1973) 571.Google Scholar
  3. 3.
    C. Serna, J. L. Ahlrichs and J. M. Serratosa, Clays Clay Miner., 23 (1975) 452.CrossRefGoogle Scholar
  4. 4.
    C. Serna, M. Rautureau, R. Prost, C. Tchoubar and J. M. Serrarosa, Bulletin du Groupe Français des Argiles, 26 (1974) 153.Google Scholar
  5. 5.
    Y. Kitayama, K. Shimizu, T. Kodama, S. Murai, T. Mizusima, M. Hayakawa and M. Muraoka, Studies Surf. Sci. Catal., 142A (2002) 675.Google Scholar
  6. 6.
    J. A. Anderson and M. Galan-Fereres, Clay Minerals, 34 (1999) 57.CrossRefGoogle Scholar
  7. 7.
    S. Damyanova, L. Daza and J. L. G. Fierro, J. Catal., 159 (1996) 150.CrossRefGoogle Scholar
  8. 8.
    A. Corma and F. A. Mocholi, Appl. Catal., A: General, 84 (1992) 31.CrossRefGoogle Scholar
  9. 9.
    A. Alvarez Berenguer, M. A. Aramendia Lopidana, V. Borau Bolos, J. M. Campelo Perez, A. Garcia Coleto, J. F. Gomez Gomez, C. Jimenez Sanchidrian, D. Luna Martinez, J. M. Marinas Rubio and R. Perez Castells, Manufacture of reduction catalysts on sepiolite supports. Span., (Tolsa S. A., Spain). Es, 1985, p. 19.Google Scholar
  10. 10.
    M. L. Occelli, R. S. Maxwell and H. Eckert, Microporous Mater., 3 (1994) 305.CrossRefGoogle Scholar
  11. 11.
    M. L. Occelli, R. S. Maxwell and H. Eckert, J. Catal., 137 (1992) 36.CrossRefGoogle Scholar
  12. 12.
    I. Dekany, L. Turi, A. Fonseca and J. B. Nagy, Appl. Clay Sci., 14 (1999) 141.CrossRefGoogle Scholar
  13. 13.
    D. P. Serdyuchenko, Mineralogicheskii Sbornik (Lvov), (1955) 156.Google Scholar
  14. 14.
    X. Zhai, J. Li and X. Zhou, Huaxue Shijie, 39 (1998) 126.Google Scholar
  15. 15.
    R. Otsuka, T. Sakamoto and Y. Hara, Nendo Kagaku, 14 (1974) 8.Google Scholar
  16. 16.
    J. T. Kloprogge and R. L. Frost, Neues Jahrb. Mineral., Monatsh., (2001) 446.Google Scholar
  17. 17.
    R. Otsuka, H. Hayashi and S. Shimoda, Memoirs of the School of Science and Engineering, Waseda University, 32 (1968) 13.Google Scholar
  18. 18.
    G. Song, J. Zhang, Y. Guo, P. Wan, T. Peng and F. Dong, Yanshi Kuangwuxue Zazhi, 18 (1999) 80, 94.Google Scholar
  19. 19.
    G. Song, T. Peng, F. Dong, P. Wan and J. Zhang, Kuangwu Xuebao, 18 (1998) 525.Google Scholar
  20. 20.
    R. L. Frost, G. A. Cash and J. T. Kloprogge, Vib. Spectrosc., 16 (1998) 173.CrossRefGoogle Scholar
  21. 21.
    J. Wang, A. Chen and W. Li, Hebei Dizhi Xueyuan Xuebao, 19 (1996) 703.Google Scholar
  22. 22.
    U. Shuali, L. Bram, M. Steinberg and S. Yariv, Thermochim. Acta, 148 (1989) 445.CrossRefGoogle Scholar
  23. 23.
    S. Yariv, Clay Miner., 21 (1986) 925.CrossRefGoogle Scholar
  24. 24.
    C. J. Serna and G. E. Vanscoyoc, Developments in Sedimentology 27 (1979) 197.CrossRefGoogle Scholar
  25. 25.
    R. Prost, Spectrochimica Acta, Part A: Mol. Biomol. Spectrosc., 31A (1975) 1497.CrossRefGoogle Scholar
  26. 26.
    R. Prost, Bulletin du Groupe Français des Argiles, 25 (1973) 53.Google Scholar
  27. 27.
    H. Hayashi, R. Otsuka, N. Imai, Am. Mineral., 54 (1969) 1613.Google Scholar
  28. 28.
    F. R. Cannings, J. Phys. Chem., 72 (1968) 1072.CrossRefGoogle Scholar
  29. 29.
    C. Alexanian, P. Morel and L. Le Bouffant, Bulletin de la Société Française de Céramique, No. 71 (1966) 3.Google Scholar
  30. 30.
    D. Vucelic, D. Simic, O. Kovacevic, M. Dojcinovic and M. Mitrovic, J. Serbian Chem. Soc., 67 (2002) 197.CrossRefGoogle Scholar
  31. 31.
    M. Radojevic, M. Dojcinovic, D. Simic, V. Vucelic and O. Kovacevic, J. Serbian Chem. Soc., 64 (1999) 131.Google Scholar
  32. 32.
    T. Kadosaka and K. Tatsuka, Kanzei Chuo Bunsekishoho, 23 (1983) 109.Google Scholar
  33. 33.
    H. Nagata and T. Sudo, Therm. Anal., [Proc. Int. Conf.], 5th (1977) 534.Google Scholar
  34. 34.
    M. Murat and J. Gielly, Bull. Groupe Fr. Argiles, 21 (1969) 151.Google Scholar
  35. 35.
    S. Yariv, J. Thermal Anal., 36 (1990) 1953.CrossRefGoogle Scholar
  36. 36.
    J. Bouzaid and R. L. Frost, J. Therm. Anal. Cal., 89 (2007) 133.CrossRefGoogle Scholar
  37. 37.
    J. M. Bouzaid, R. L. Frost and W. N. Martens, J. Therm. Anal. Cal., 89 (2007) 511.CrossRefGoogle Scholar
  38. 38.
    J. M. Bouzaid, R. L. Frost, A. W. Musumeci and W. N. Martens, J. Therm. Anal. Cal., 86 (2006) 745.CrossRefGoogle Scholar
  39. 39.
    R. L. Frost, J. M. Bouzaid, A. W. Musumeci, J. T. Kloprogge and W. N. Martens, J. Therm. Anal. Cal., 86 (2006) 437.CrossRefGoogle Scholar
  40. 40.
    R. L. Frost, Z. Ding and H. D. Ruan, J. Therm. Anal. Cal., 71 (2003) 783.CrossRefGoogle Scholar
  41. 41.
    R. L. Frost, K. Erickson and M. Weier, J. Therm. Anal. Cal., 77 (2004) 851.CrossRefGoogle Scholar
  42. 42.
    R. L. Frost and K. L. Erickson, J. Therm. Anal. Cal., 76 (2004) 217.CrossRefGoogle Scholar
  43. 43.
    R. L. Frost and K. L. Erickson, J. Therm. Anal. Cal., 78 (2004) 367.CrossRefGoogle Scholar
  44. 44.
    R. L. Frost, J. Kristof, W. N. Martens, M. L. Weier and E. Horvath, J. Therm. Anal. Cal., 83 (2006) 675.CrossRefGoogle Scholar
  45. 45.
    R. L. Frost, J. Kristof, M. L. Weier, W. N. Martens and E. Horvath, J. Therm. Anal. Cal., 79 (2005) 721.CrossRefGoogle Scholar
  46. 46.
    R. L. Frost, W. Martens and M. O. Adebajo, J. Therm. Anal. Cal., 81 (2005) 351.CrossRefGoogle Scholar
  47. 47.
    R. L. Frost, A. W. Musumeci, M. O. Adebajo and W. Martens, J. Therm. Anal. Cal., 89 (2007) 95.CrossRefGoogle Scholar
  48. 48.
    R. L. Frost, A. W. Musumeci, J. T. Kloprogge, M. L. Weier, M. O. Adebajo and W. Martens, J. Therm. Anal. Cal., 86 (2006) 205.CrossRefGoogle Scholar
  49. 49.
    R. L. Frost, M. L. Weier and W. Martens, J. Therm. Anal. Cal., 82 (2005) 115.CrossRefGoogle Scholar
  50. 50.
    R. L. Frost, M. L. Weier and W. Martens, J. Therm. Anal. Cal., 82 (2005) 373.CrossRefGoogle Scholar
  51. 51.
    R. L. Frost, R.-A. Wills, J. T. Kloprogge and W. Martens, J. Therm. Anal. Cal., 84 (2006) 489.CrossRefGoogle Scholar
  52. 52.
    R. L. Frost, R.-A. Wills, J. T. Kloprogge and W. N. Martens, J. Therm. Anal. Cal., 83 (2006) 213.CrossRefGoogle Scholar
  53. 53.
    A. W. Musumeci, G. G. Silva, W. N. Martens, E. R. Waclawik and R. L. Frost, J. Therm. Anal. Cal., 88 (2007) 885.CrossRefGoogle Scholar
  54. 54.
    Y. Xi, W. Martens, H. He and R. L. Frost, J. Therm. Anal. Cal., 81 (2005) 91.CrossRefGoogle Scholar
  55. 55.
    E. Horvath, J. Kristof, R. L. Frost, N. Heider and V. Vagvölgyi, J. Therm. Anal. Cal., 78 (2004) 687.CrossRefGoogle Scholar
  56. 56.
    R. L. Frost, M. L. Weier and K. L. Erickson, J. Therm. Anal. Cal., 76 (2004) 1025.CrossRefGoogle Scholar
  57. 57.
    E. Horvath, J. Kristof, R. L. Frost, A. Redey, V. Vagvolgyi and T. Cseh, J. Therm. Anal. Cal., 71 (2003) 707.CrossRefGoogle Scholar
  58. 58.
    J. Kristof, R. L. Frost, J. T. Kloprogge, E. Horvath and E. Mako, J. Therm. Anal. Cal., 69 (2002) 77.CrossRefGoogle Scholar
  59. 59.
    R. L. Frost, W. Martens, Z. Ding and J. T. Kloprogge, J. Therm. Anal. Cal., 71 (2003) 429.CrossRefGoogle Scholar
  60. 60.
    R. L. Frost, J. Kristof, E. Horvath and J. T. Kloprogge, J. Colloid Interface Sci., 239 (2001) 126.CrossRefGoogle Scholar
  61. 61.
    R. L. Frost, J. Kristof, E. Horvath and J. T. Kloprogge, Langmuir, 17 (2001) 3216.CrossRefGoogle Scholar
  62. 62.
    R. L. Frost, J. Kristof, E. Horvath, W. N. Martens and J. T. Kloprogge, J. Colloid Interface Sci., 251 (2002) 350.CrossRefGoogle Scholar
  63. 63.
    Z. Ding and R. L. Frost, Thermochim. Acta, 389 (2002) 185.CrossRefGoogle Scholar
  64. 64.
    R. L. Frost and Z. Ding, Thermochim. Acta, 397 (2003) 119.CrossRefGoogle Scholar
  65. 65.
    R. L. Frost, J. Kristof, Z. Ding and E. Horvath, 2001 a Clay Odyssey, Proceedings of the International Clay Conference, 12th, Bahia Blanca, Argentina, July 22–28, 2001 (2003) 523.Google Scholar
  66. 66.
    H. Nagata, Nendo Kagaku, 17 (1977) 1.Google Scholar
  67. 67.
    J. L. Ahlrichs, C. Serna and J. M. Serratosa, Clays Clay Miner., 23 (1975) 119.CrossRefGoogle Scholar
  68. 68.
    H. Hayashi, R. Otsuka and N. Imai, Am. Miner., 54 (1969) 1613.Google Scholar
  69. 69.
    C. Serna, J. L. Ahlrichs and J. M. Serratosa, Clays Clay Miner., 23 (1975) 411.CrossRefGoogle Scholar
  70. 70.
    C. Serna, G. E. VanScoyoc and J. L. Ahlrichs, Am. Miner., 62 (1977) 784.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Veronika Vágvölgyi
    • 1
  • Lisa M. Daniel
    • 2
  • Caroline Pinto
    • 2
  • J. Kristóf
    • 1
  • R. L. Frost
    • 2
  • Erzsébet Horváth
    • 3
  1. 1.Department of Analytical ChemistryUniversity of PannoniaVeszprémHungary
  2. 2.Inorganic Materials Research Program, School of Physical and Chemical SciencesQueensland University of TechnologyBrisbaneAustralia
  3. 3.Department of Environmental Engineering and Chemical TechnologyUniversity of PannoniaVeszprémHungary

Personalised recommendations