Compensation effect as a consequence of vibrational energy transfer in homogeneous and isotropic heat field

  • Nicolina Pop
  • Gabriela Vlase
  • T. Vlase
  • N. Doca
  • A. Mogoş
  • A. Ioiţescu


By kinetics of decomposition of solids in both isothermal and non-isothermal conditions, the compensation effect (CE) is rather a rule.

The topic of this work is to suggest an activation mechanism which leads to the dependences similar with CE.

The solid is assimilated to a system of the harmonic oscillator with a Bose-Einstein energy distribution.

Considering an activation process due to a vibrational energy transfer from a homogeneous and isotropic field of thermic oscillators to the solid-state oscillator, the thermodynamic functions are in the relationship
$$ \Delta S^ * = \Delta H^ * /T_{is} $$
where ΔH* and ΔS* are the activation functions and T is is the isokinetic temperature.
Taking into account the definitions of H and S by means of the partition function, the isokinetic temperature is assimilated with the characteristic temperature
$$ T = \hbar \theta /k_B $$

An important consequence, a correlation between the isokinetic temperature and the spectroscopic wavenumber of the activated bond, is illustrated by a number of decomposition reactions under non-isothermal conditions.


activation mechanism compensation effect isokinetic temperature vibrational energy 


  1. 1.
    F. H. Constable, Proc. R. Soc. London Ser. A, 108 (1925) 355.CrossRefGoogle Scholar
  2. 2.
    E. Segal and D. Fatu, Introduction to Non-Isothermal Kinetics, Publishing House of the Romanian Academy, Bucharest, 1983 (in Romanian).Google Scholar
  3. 3.
    D. S. Dias, M. S. Crespi, C. S. Ribeiro, I. L. S. Fernandes and H. M. G. Cerqueira, J. Therm. Anal. Cal., 91 (2008) 409.CrossRefGoogle Scholar
  4. 4.
    A. Corma, F. Llopis, J. B. Monton and S. Weller, J. Catal., 142 (1993).Google Scholar
  5. 5.
    A. K. Galwey and M. E. Brown, Thermochim. Acta, 386 (2002) 91.CrossRefGoogle Scholar
  6. 6.
    N. Doca, T. Vlase and G. Vlase, Rev. Roum. Chim., 48 (2003) 955.Google Scholar
  7. 7.
    G. C. Bond, Catalysis by Metals, Academic Press, New York 1962.Google Scholar
  8. 8.
    C. Kemball, Proc. R. Soc. London Ser. A, 207 (1951) 539.CrossRefGoogle Scholar
  9. 9.
    W. Good and J. Stone, Tetrahedron, 31 (1975) 379.CrossRefGoogle Scholar
  10. 10.
    M. M. Al Omari, M. B. Zughul, J. E. D. Davies and A. A. Badwan, J. Incl. Phenom. Macrocycl. Chem., 57 (2007) 379.CrossRefGoogle Scholar
  11. 11.
    W. Conner, J. Catal., 78 (1982) 238.CrossRefGoogle Scholar
  12. 12.
    R. Larsson, Catal. Today, 1 (1987) 99.CrossRefGoogle Scholar
  13. 13.
    R. Larsson, Catal. Lett., 11 (1991) 137.CrossRefGoogle Scholar
  14. 14.
    R. Larsson, J. Mol. Catal., A129 (1998) 41.CrossRefGoogle Scholar
  15. 15.
    E. Cremen, Allg. Prakt. Chem., 67 (1967) 173.Google Scholar
  16. 16.
    S. Glasstone, K. Laidler and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York 1994.Google Scholar
  17. 17.
    T. Vlase, G. Jurca and N. Doca, Thermochim. Acta, 379 (2001) 59.CrossRefGoogle Scholar
  18. 18.
    T. Vlase, G. Jurca and N. Doca, Thermochim. Acta, 379 (2001) 65.CrossRefGoogle Scholar
  19. 19.
    T. Vlase, G. Vlase, A. Chiriac and N. Doca, J. Therm. Anal. Cal., 72 (2003) 839.CrossRefGoogle Scholar
  20. 20.
    R. Kubo, Statistical Mechanics, North-Holland, Amsterdam 1965.Google Scholar
  21. 21.
    A. L. Fetter and J. D. Walecka, Quantum Theory of Many-particle Systems, McGraw-Hill, New York 1965.Google Scholar
  22. 22.
    A. Ben-Naim, Statistical Thermodynamics for Chemists and Biologist, Plenum Press, New York 1992.Google Scholar
  23. 23.
    G. Herzberg, Molekủlspekten u. Molekủlstruktur, I. Zweiatomige Molekủle, Steinkopff, Drezden-Leipzig 1939.Google Scholar
  24. 24.
    R. M. Silverstein, G. Clayton Bassler and T. C. Morrell, Spectrometric Identification of the Compounds, 5th Ed., John Wiley Inc., 1995.Google Scholar
  25. 25.
    N. B. Colthup, L. H. Daly and S. E. Wiberlej, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York 1964.Google Scholar
  26. 26.
    T. Vlase, G. Vlase, M. Doca and N. Doca, J. Therm. Anal. Cal., 72 (2003) 597.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Nicolina Pop
    • 1
  • Gabriela Vlase
    • 1
  • T. Vlase
    • 1
  • N. Doca
    • 1
  • A. Mogoş
    • 1
  • A. Ioiţescu
    • 1
  1. 1.Research Center for Thermal Analysis in Environmental ProblemsWest University of TimişoaraTimişoaraRomania

Personalised recommendations