Journal of Thermal Analysis and Calorimetry

, Volume 94, Issue 1, pp 103–107 | Cite as

Halloysite nanotubes/polystyrene (HNTs/PS) nanocomposites via in situ bulk polymerization

Article

Abstract

Serials of halloysite nanotubes/polystyrene (HNTs/PS) nanocomposites with different contents of organo-modified halloysite nanotubes (organo-HNTs) were successfully prepared by the in situ bulk polymerization of styrene with the organo-HNTs as macromonomers. The percentage of grafting (PG%) of more than 230% was achieved, calculated from the results of the thermogravimetric analysis (TG). The TG results also showed that the thermal stabilities of the HNTs/PS nanocomposites prepared via the bulk polymerization were better than the pure polystyrene. And the maximum thermal degradation temperature of the nanocomposites increased with the increasing of the amount of the HNTs fillers added.

Keywords

bulk polymerization halloysite nanotubes nanocomposites polystyrene thermal stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Fischer, Mater. Sci. Eng. C, 23 (2003) 763.CrossRefGoogle Scholar
  2. 2.
    S. C. Tjong, Mater. Sci. Eng. R, 53 (2006) 73.CrossRefGoogle Scholar
  3. 3.
    D. L. Burris, B. Boesl, G. R. Bourne and W. G. Sawyer, Macromol. Mater. Eng., 292 (2007) 387.CrossRefGoogle Scholar
  4. 4.
    G. Rupali and D. Amitabha, Chem. Mater., 13 (2000) 608.Google Scholar
  5. 5.
    B. M. Alexander, Polym. Adv. Technol., 17 (2007) 206.Google Scholar
  6. 6.
    S. C. Mojumdar, L. Raki, N. Mathis, K. Schmidt and S. Lang, J. Therm. Anal. Cal., 85 (2006) 119.CrossRefGoogle Scholar
  7. 7.
    M. Alexandre and P. Dubois, Mater. Sci. Eng. R., 28 (2000) 1.CrossRefGoogle Scholar
  8. 8.
    C. E. Powell and G. W. Beall, Curr. Opin. Solid State Mater. Sci., 10 (2006) 73.CrossRefGoogle Scholar
  9. 9.
    Q. H. Zeng, A. B. Yu, G. Q. Lu and D. R. Paul, J. Nanosci. Nanotechnol., 5 (2005) 1574.CrossRefGoogle Scholar
  10. 10.
    S. Sinha Ray and M. Okamoto, Prog. Polym. Sci., 28 (2003) 1539.CrossRefGoogle Scholar
  11. 11.
    A. Bansal, H. Yang, C. Li, B. C. Benicewicz, S. K. Kumar and L. S. Schadler, J. Polym. Sci.: Polym. Phys., 44 (2006) 2944.CrossRefGoogle Scholar
  12. 12.
    J. Xu, F. Qiu, H. Zhang and Y. Yang, J. Polym. Sci.: Polym. Phys., 44 (2006) 2811.CrossRefGoogle Scholar
  13. 13.
    S. S. Lee and J. Kim, J. Polym. Sci.: Polym. Phys., 42 (2004) 2367.CrossRefGoogle Scholar
  14. 14.
    D. Ciprai, K. Jacob and R. Tannenbaum, Macromolecules, 39 (2006) 6565.CrossRefGoogle Scholar
  15. 15.
    L. Schadler, Mater Mater., 6 (2007) 257.Google Scholar
  16. 16.
    P. Rittiqstein and J. M. Torkelson, J. Polym. Sci.: Polym. Phys., 44 (2006) 2935.CrossRefGoogle Scholar
  17. 17.
    P. Liu, E-Polymers, (2006) No. 070.Google Scholar
  18. 18.
    P. Liu, Polymeric Nanostructures and their Applications, Ed. by H. S. Nalwa, Volume 2, Chapter 13, American Scientific Publishers, CA, 2007.Google Scholar
  19. 19.
    S. R. Levis and P.B. Deasy, Int. J. Pharm., 243 (2002) 125.CrossRefGoogle Scholar
  20. 20.
    H. Noro, Miner., 21 (1986) 401.Google Scholar
  21. 21.
    S. J. Antill, Aust. J. Chem., 56 (2003) 723.CrossRefGoogle Scholar
  22. 22.
    D. G. Shchukin, G. B. Sukhorukov, R. R. Price and Y. M. Lvov, Small, 1 (2005) 510.CrossRefGoogle Scholar
  23. 23.
    M. L. Du, B. C. Guo and D. M. Jia, Eur. Polym. J., 42 (2006) 1362.CrossRefGoogle Scholar
  24. 24.
    P. Liu, J. Tian, W. M. Liu and Q. J. Xue, Polym. J., 35 (2003) 379.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Institute of Polymer Science and Engineering, College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouP.R. China

Personalised recommendations