Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 94, Issue 2, pp 545–551 | Cite as

Rigid amorphous fraction in poly(ethylene terephthalate) determined by dilatometry

  • P. SlobodianEmail author
Article

Abstract

Volumetric thermal analysis of semicrystalline poly(ethylene terephthalate), PET, with different content of crystalline phase was carried out using mercury-in-glass dilatometry. The effect of crystals on the thermal properties of amorphous phase (glass transition temperature, T g, thermal expansion coefficients, α) were determined. At cold-crystallization (106°C, up to 4 h), crystalline content of 2.4–25.3 vol.% was achieved. Increasing content of crystalline phase broadens the glass transition region and increases T g. The change of thermal expansion coefficient during glass transition is lower than that predicted by the two-phase model, which indicates the presence of a third fraction — rigid amorphous fraction (RAF), whose content steadily increases during crystallization. However, its relative portion (specific RAF) is significantly reduced. Further significant decrease in specific RAF appears after annealing at a higher temperature.

Keywords

cold-crystallization dilatometry glass transition temperature poly(ethylene terephthalate) rigid amorphous fraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Wunderlich, Prog. Polym. Sci., 28 (2003) 383.CrossRefGoogle Scholar
  2. 2.
    B. Wunderlich, Macromol. Rapid Commun., 26 (2005) 1521.CrossRefGoogle Scholar
  3. 3.
    R. Androsch and B. Wunderlich, Polymer, 46 (2005) 12556.CrossRefGoogle Scholar
  4. 4.
    M. Song, J. Appl. Polym. Sci., 81 (2001) 2779.CrossRefGoogle Scholar
  5. 5.
    J. Lin, S. Shenogin and S. Nazarenko, Polymer, 43 (2002) 4733.CrossRefGoogle Scholar
  6. 6.
    M. Song and D. J. Hourston, J. Therm. Anal. Cal., 54 (1998) 651.CrossRefGoogle Scholar
  7. 7.
    R. Rastogi, P. Vellinga, S. Rastogi, C. Schick and H. E. H. Meijer, J. Polym. Sci. Pol. Phys., 42 (2004) 2092.CrossRefGoogle Scholar
  8. 8.
    J. Hadač, P. Slobodian and P. Sáha, J. Mater. Sci., DOI 10. 1007/s10853-006-0378-z (2007).Google Scholar
  9. 9.
    J. D. Menczel and M. Jaffe, J. Therm. Anal. Cal., 89 (2007) 357.CrossRefGoogle Scholar
  10. 10.
    N. M. Alves, J. F. Mano, E. Balaguer, J. M. Meseguer Dueñas and J. L. Gómez Ribelles, Polymer, 43 (2002) 4111.CrossRefGoogle Scholar
  11. 11.
    S. Montserrat and P. Cortés, J. Mater. Sci., 30 (1995) 1790.CrossRefGoogle Scholar
  12. 12.
    G. Vigier and J. Tatibouet, Polymer, 34 (1993) 4257.CrossRefGoogle Scholar
  13. 13.
    A. Aref-Azar, F. Arnoux, F. Biddlestone and J. N. Hay, Thermochim. Acta, 273 (1996) 217.CrossRefGoogle Scholar
  14. 14.
    W. Dong, J. Zhao, Ch. Li, M. Guo, D. Zhao and Q. Fan, Polym. Bull., 49 (2002) 197.CrossRefGoogle Scholar
  15. 15.
    G. Vigier, J. Tatibouet, A. Benatmane and R. Vassoille, Colloid Polym. Sci., 270 (1992) 1182.CrossRefGoogle Scholar
  16. 16.
    K. Fukao and Y. Miyamoto, J. Non-Cryst. Solids, 211 (1997) 208.CrossRefGoogle Scholar
  17. 17.
    B. G. Olson, J. Lin, S. Nazarenko and M. Jamieson, Macromolecules, 36 (2003) 7618.CrossRefGoogle Scholar
  18. 18.
    G. Dlubek, A. S. Gupta, J. Pionteck, R. Hassler, R. Krause-Rehberg, H. Kaspar and K. H. Lochhaas, Polymer, 46 (2005) 6075.CrossRefGoogle Scholar
  19. 19.
    H. Chen and P. Cebe, J. Therm. Anal. Cal., 89 (2007) 417.CrossRefGoogle Scholar
  20. 20.
    C. Schick, A. Wurm, M. Merzlyakov, A. Minakov and H. Marand, J. Therm. Anal. Cal., 64 (2001) 549.CrossRefGoogle Scholar
  21. 21.
    R. K. Krishnaswamy, J. F. Geibel and B. J. Lewis, Macromolecules, 36 (2003) 2907.CrossRefGoogle Scholar
  22. 22.
    Y. M. Wang, S. S. Funari and J. F. Mano, Macromol. Chem. Phys., 207 (2003) 11262.Google Scholar
  23. 23.
    C. Schick, J. Dobbertin, M. Potter, H. Dehne, A. Hensel, A. Wurm, A. M. Ghoneim and S. Weyer, J. Thermal Anal., 49 (1997) 499.CrossRefGoogle Scholar
  24. 24.
    L. C. E. Struik, Polymer, 28 (1987) 1534.CrossRefGoogle Scholar
  25. 25.
    Y. G. Fu, B. Annis, A. Boller, Y. M. Jin and B. Wunderlich, J. Polym. Sci. Pol. Phys., 32 (1994) 2289.CrossRefGoogle Scholar
  26. 26.
    ASTM Standard D 864-52 (1952).Google Scholar
  27. 27.
    J. Brandrup and E. H. Immegut, Polymer Handbook the 3rd Ed., Wiley & Sons Inc., New York 1989, p. V/101.Google Scholar
  28. 28.
    S. Fakirov, E. V. Fischer and G. F. Schmidt, Macromol. Chem., 176 (1975) 2459.CrossRefGoogle Scholar
  29. 29.
    R. M. R. Wellen and M. S. Rabello, J. Mater. Sci., 40 (2005) 6099.CrossRefGoogle Scholar
  30. 30.
    C. Schick, L. Krämer and W. Mischok, Acta Polym., 36 (1985) 47.CrossRefGoogle Scholar
  31. 31.
    P. Zoller and D. Walsh, Standard Pressure-Volume-Temperature Data for Polymers, Technomic Publishing Co. Inc., Lancaster 1995, p. 323.Google Scholar
  32. 32.
    K. H. Hellwege, J. Hennig and W. Knappe, Kolloid-zeitschrift and Zeitschrift für Polymere, 186 (1962) 29.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Faculty of TechnologyTomas Bata University in ZlínZlínCzech Republic

Personalised recommendations