Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 91, Issue 1, pp 17–27 | Cite as

Study of deterioration of historical parchments by various thermal analysis techniques complemented by SEM, FTIR, UV-Vis-NIR and unilateral NMR investigations

  • Elena Badea
  • Lucreţia Miu
  • P. Budrugeac
  • Maria Giurginca
  • A. Mašić
  • Nicoleta Badea
  • G. Della Gatta
Article

Abstract

A comprehensive investigation has been made of a set of 14th to 16th-century parchment bookbindings from the Historical Archives of the City of Turin. Advanced physico-chemical techniques, such as thermal analysis (DSC, TG and DTA), spectroscopy (FTIR and UV-Vis-NIR), scanning electron microscopy (SEM) and unilateral nuclear magnetic resonance (NMR-ProFiler) were employed to assess specific deterioration processes occurring at different levels in the hierarchical structure of parchment. Changes in the measured physical and chemical parameter values of parchment due to interaction with the environment were used to identify possible deterioration pathways.

Keywords

deterioration pathways DSC DTA FTIR historical parchments NMR SEM TG thermal analysis UV-Vis-NIR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Rich and F. H. C. Crick, J. Mol. Biol., 3 (1961) 483.CrossRefGoogle Scholar
  2. 2.
    R. D. B. Fraser, T. P. MacRae and E. Suzuki, J. Mol. Biol., 129 (1979) 463.CrossRefGoogle Scholar
  3. 3.
    B. Brodsky and E. F. Eikenberry, Method Enzymol., 82 (1982) 127.Google Scholar
  4. 4.
    J. Bella, M. Eaton, B. Brodsky and H. M. Barman, Science, 266 (1994) 75.CrossRefGoogle Scholar
  5. 5.
    C. A. Miles and A. J. Bailey, Micron, 32 (2001) 325.CrossRefGoogle Scholar
  6. 6.
    T. J. Wess, M. Drakopoulos, A. Snigirev, J. Wouters, O. Paris, P. Fratzl, M. Collins, J. Hiller and K. Nielsen, Archaeometry, 43 (2001) 117.CrossRefGoogle Scholar
  7. 7.
    C. J. Kennedy and T. J. Wess, Restaurator, 24 (2003) 61.Google Scholar
  8. 8.
    E. Mannucci, R. Pastorelli, G. Zerbi, C. E. Bottani and A. Facchini, J. Raman Spectrosc., 31 (2000) 1089.CrossRefGoogle Scholar
  9. 9.
    A. E. Aliev, Biopolymers, 77 (2005) 230.CrossRefGoogle Scholar
  10. 10.
    C. A. Maxwell, T. J. Wess and C. J. Kennedy, Biomacromolecules, 7 (2006) 2321.CrossRefGoogle Scholar
  11. 11.
    P. Budrugeac, L. Miu, V. Bocu, F. J. Wortman and C. Popescu, J. Therm. Anal. Cal., 72 (2003) 1057.CrossRefGoogle Scholar
  12. 12.
    G. Della Gatta, E. Badea, R. Ceccarelli, T. Usacheva, A. Mašić and S. Coluccia, J. Therm. Anal. Cal., 82 (2005) 637.CrossRefGoogle Scholar
  13. 13.
    A. Mašić, E. Badea, R. Ceccarelli, G. Della Gatta and S. Coluccia, in ‘Lo Stato dell’Arte 2’, Proceedings II Congresso Nazionale IGIIC, Il Prato, Padova 2004, ISBN 88-87243-94-8, pp. 52–57.Google Scholar
  14. 14.
    A. Meghea, M. Giurginca, N. Iftimie, L. Miu, V. Bocu and P. Budrugeac, Mol. Cryst. Liq. Cryst., 418 (2004) 285.CrossRefGoogle Scholar
  15. 15.
    G. Della Gatta, E. Badea, A. Mašiś and R. Ceccarelli, in ‘Improved Damage Assessment of Parchment (IDAP) Collection and Sharing of Knowledge.’ Ed. R. Larsen, Directorate-General for Research, Directorate Environment, European Communities 2007, ISBN 987-92-79-05378-8, pp. 51–60.Google Scholar
  16. 16.
    B. Roduit and M. Odlyha, J. Therm. Anal. Cal., 85 (2006) 157.CrossRefGoogle Scholar
  17. 17.
    J. Pires and A. J. Cruz, J. Therm. Anal. Cal., 87 (2007) 411.CrossRefGoogle Scholar
  18. 18.
    R. Larsen, D.V. Poulsen and M. Vest, in ’Microanalysis of Parchment’, Ed. R. Larsen, Archetype Publications Ltd., London 2002, pp. 55–62.Google Scholar
  19. 19.
    A. Mašić, Doctoral Dissertation: Applicazione di tecniche innovative nello studio dei processi di degrado dei manufatti di interese artistico-culturale, University of Turin, Turin, 2006.Google Scholar
  20. 20.
    D. Fessas, M. Signorelli and A. Schiraldi, Thermochim. Acta, 447 (2006) 30.CrossRefGoogle Scholar
  21. 21.
    C. E. Weir, J. Am. Leather Chem. Assoc., 44 (1949) 108.Google Scholar
  22. 22.
    C. Delisi and M. H. Shamos, J. Polym. Sci., 10 (1972) 673.Google Scholar
  23. 23.
    M. Luescher, M. Rueff and P. Schindler, Polymers, 13 (1974) 2489.Google Scholar
  24. 24.
    Y. Okamoto and K. Saeki, Kolloid-Z., Z. Polym., 194 (1964) 124.CrossRefGoogle Scholar
  25. 25.
    D. J. Hulmes, T. J. Wess, D. J. Prockop and P. Fratzl, Biophys. J., 68 (1995) 1661.CrossRefGoogle Scholar
  26. 26.
    C. J. Kennedy, K. Nielsen, L. Ramsay and T. J. Wess, Fibre Diffr. Rev., 11 (2003) 117.Google Scholar
  27. 27.
    P. Budrugeac, L. Miu and M. Souckova, J. Therm. Anal. Cal., 88 (2007) 693.CrossRefGoogle Scholar
  28. 28.
    W. K. Loke and E. Khor, Biomaterials, 16 (1995) 251.CrossRefGoogle Scholar
  29. 29.
    C. Chahine, Thermochim. Acta, 365 (2000) 101.CrossRefGoogle Scholar
  30. 30.
    P. Kronick, B. Maleeff and R. Carroll, Connect. Tissue Res., 18 (1988) 123.CrossRefGoogle Scholar
  31. 31.
    D. G. Wallace, R. A. Condell, J. W. Donovan, A. Paivinen and W. M. Rhee, Biopolymers, 25 (1986) 1875.CrossRefGoogle Scholar
  32. 32.
    T. Gutsmann, G. E. Fantner, M. Venturoni, A. Ekani-Nkodo, J. B. Thompson, J. H. Kindt, D. E. Morse, D. Kuchnir Fygenson and P. K. Hansma, Biophys. J., 84 (2003) 2593.Google Scholar
  33. 33.
    R. Larsen, D. V. Poulsen, F. Juchauld, H. Herosch, M. Odlyha, J. de Groot, T. Wess, J. Hill, C. Kennedy, G. Della Gatta, E. Badea, A. Mašić, S. Boghosian and D. Fessas, in Preprints of ICOM Committee for Conservation 14th Triennial Meeting, The Hague, James and James Ed., London 2005, ISBN 1-84407-253-3, Vol. 1, pp. 199–208.Google Scholar
  34. 34.
    E. Badea, A. Mašić, L. Miu, C. Laurora, A. Braghieri, V. E. Marinescu, S. Coluccia and G. Della Gatta, in ‘Lo Stato dell’Arte 5’, Nardini Editore, Firenze 2007, ISBN 978-88-404-4156-6, pp. 101–108.Google Scholar
  35. 35.
    J. J. Lim and M. H. Shannon, Biopolymers, 13 (1974) 1791.CrossRefGoogle Scholar
  36. 36.
    G. de Simone, B. Naviglio, M. Tomaselli, L. Bianchi, D. Sannino and P. Ciambelli, XXIII IULTCS Congress, Friedrichshafen 1995, Part 1, Paper 21.Google Scholar
  37. 37.
    A. Kaminska and A. Siokowska, Polym. Degrad. Stab., 51 (1996) 15.CrossRefGoogle Scholar
  38. 38.
    L. F. Lozano, M. A. Pena-Rico, A. Hereira, J. Ocotlan-Flores, A. Gomez-Cortes, R. Velazquez, I. A. Belio and L. Bucio, J. Mater. Sci., 38 (2003) 4777.CrossRefGoogle Scholar
  39. 39.
    P. Budrugeac, L. Miu, C. Popescu and F. J. Wortmann, J. Therm. Anal. Cal., 79 (2004) 975.CrossRefGoogle Scholar
  40. 40.
    B. Brodsky-Doyle, E. G. Bendit and E. R. Blout, Biopolymers, 14 (1975) 937.CrossRefGoogle Scholar
  41. 41.
    M. Derrick, Book and Paper Group Annual, The American Institute for Conservation, Vol. 10, Washington D.C., 1991.Google Scholar
  42. 42.
    A. T. Balaban, M. Banciu and I. Pogany, ’Application of physics methods in organic chemistry’, Ed. Štiinţificăş i Enciclopedică, Bucureşti, 193.Google Scholar
  43. 43.
    H. M. Heise, In Infrared and Raman Spectroscopy of Biological Materials; H. U. Gremlich, B. Yan Eds; Marcel Dekker: New York 2000.Google Scholar
  44. 44.
    V.H. Segtnan, S. Šašić, T. Issaksson and Y. Ozaki, Anal. Chem., 73 (2001) 3153.CrossRefGoogle Scholar
  45. 45.
    S. Šašić, V. H. Segtnan and Y. Ozaki, J. Phys. Chem. A, 106 (2002) 760.CrossRefGoogle Scholar
  46. 46.
    Y. Wang, K. Murayama, Y. Myojo, R. Tsenkova, H. Hayashi and Y. Ozaki, J. Phys. Chem. B, 102 (1998) 6655.CrossRefGoogle Scholar
  47. 47.
    Y. Wu, B. Czarnik-Matsusewicz, K. Murayama and Y. Ozaki, J. Phys. Chem. B, 104 (2000) 5840.CrossRefGoogle Scholar
  48. 48.
    M. Egawa, T. Fukuhara, M. Takahashi and Y. Ozaki, Appl. Spectrosc., 57 (2003) 473.CrossRefGoogle Scholar
  49. 49.
    A. Mašić, E. Badea, G. Martra and S. Coluccia, Nanoletters, submitted.Google Scholar
  50. 50.
    C. J. Kennedy, J. C. Hiller, D. Lammie, M. Drakopolos, M. Vest, M. Cooper, W. P. Adderley and T. J. Wess, Nanoletters, 4/8 (2004) 1373.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Elena Badea
    • 1
  • Lucreţia Miu
    • 2
  • P. Budrugeac
    • 3
  • Maria Giurginca
    • 4
  • A. Mašić
    • 1
  • Nicoleta Badea
    • 4
  • G. Della Gatta
    • 1
  1. 1.Department of Chemistry IFMUniversity of TurinTurinItaly
  2. 2.National Research and Development Institute for Textile and LeatherBucharestRomania
  3. 3.National Institute for Research and Development in Electrical Engineering ICPE-CABucharestRomania
  4. 4.University ‘POLITEHNICA’ of BucharestBucharestRomania

Personalised recommendations