Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 90, Issue 1, pp 81–84 | Cite as

The mechanochemical reduction of AgCl with metals

Revisiting an experiment of M. Faraday
  • L. Takacs
Article

Abstract

Faraday induced the mechanochemical reduction of AgCl with Zn, Sn, Fe and Cu in 1820, using trituration in a mortar. This experiment is revisited, employing a mortar-and-pestle and a ball mill as mechanochemical reactors. The reaction kinetics depends both on the thermochemical properties and the hardness of the reactants. When using Zn as the reducing agent, Faraday likely observed a mechanically induced self-sustaining process (MSR), or at least he came very close to doing so.

Keywords

Faraday mechanochemistry self-sustaining reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Carey Lea, Am. J. Sci., 3rd Ser., 47 (1894) 377.Google Scholar
  2. 2.
    V. V. Boldyrev, Russ. Chem. Rev., 75 (2006) 177.CrossRefGoogle Scholar
  3. 3.
    M. Faraday, Chemical Manipulations; being Instructions to Students in Chemistry on the Methods of Performing Experiments of Demonstrations or of Research, with Accuracy and with Success, W. Phillips, London 1827, p. 147.Google Scholar
  4. 4.
    M. Faraday, Chemical Manipulations; being Instructions to Students in Chemistry on the Methods of Performing Experiments of Demonstrations or of Research, with Accuracy and with Success, W. Phillips, London 1827, p. 597.Google Scholar
  5. 5.
    M. Faraday, The Quarterly Journal of Science, Literature and the Arts, 8 (1820) 374.Google Scholar
  6. 6.
    G. Cantor, D. Gooding and F. A. J. L. James, Michael Faraday, Humanity Books, Amherst, N.Y. 1996, p. 10.Google Scholar
  7. 7.
    M. Faraday, Experimental Researches in Chemistry and Physics, Taylor and Francis, London 1859.Google Scholar
  8. 8.
    L. Takacs, J. Mater. Sci., 39 (2004) 4987.CrossRefGoogle Scholar
  9. 9.
    L. Takacs, J. Metals, 52 (2000) 12.Google Scholar
  10. 10.
    L. Takacs, Prog. Mater. Sci., 47 (2002) 355.CrossRefGoogle Scholar
  11. 11.
    J. A. Rodrigues, V. C. Pandolfelli, W. J. Botta F., R. Tomasi, B. Derby, R. Stevens and R. J. Brook, J. Mater. Sci. Lett., 10 (1991) 819.CrossRefGoogle Scholar
  12. 12.
    H. Yang and P. G. McCormick, J. Mater. Sci. Lett., 12 (1993) 1088.CrossRefGoogle Scholar
  13. 13.
    T. Tsuzuki and P. G. McCormick, J. Phys. D: Appl. Phys., 29 (1996) 2365.CrossRefGoogle Scholar
  14. 14.
    T. Tsuzuki and P. G. McCormick, Mater. Sci. Forum, 343–346 (2000) 383.CrossRefGoogle Scholar
  15. 15.
    E. G. Baburaj, K. T. Hubert and F. H. (Sam) Froes, J. Alloys Compd., 257 (1997) 146.CrossRefGoogle Scholar
  16. 16.
    L. P. Williams, Michael Faraday, Basic Books, Inc., New York 1987, p. 11.Google Scholar
  17. 17.
    Chr. G. Tschakarov, G. G. Gospodinov and Z. Bontschev, J. Solid State Chem., 41 (1982) 244.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  1. 1.Baltimore County, Department of PhysicsUniversity of MarylandBaltimoreUSA

Personalised recommendations