Journal of Thermal Analysis and Calorimetry

, Volume 93, Issue 2, pp 547–552 | Cite as

Biodegradable packing materials based on waste collagen hydrolysate cured with dialdehyde starch

  • F. LangmaierEmail author
  • M. Mládek
  • P. Mokrejš
  • K. Kolomazník


Hydrogels of collagen hydrolysate (H) of mean M w 15–30 kDa obtained from waste collagen from meat casings manufacture, cross-linked with 15% (based on H) polymeric dialdehyde starch (DAS), have a marked tendency to ageing, which shows in hydrogel gradually increasing rigidity and decreasing thermo-reversibility. Methods of thermal analysis (DSC, TG) proved that ageing of hydrogels is not related with a non-equilibrium state of the cross-linking reaction but is rather given by increasing density of inter-chain hydrogen bonds between polypeptide segments of H. Plasticizing effect of DAS on H is not too pronounced but the difference between glass transition temperature of dry xerogel T g = 189.5±2.5°C and temperature of starting degradation (DAS component) 241.4±12.7°C offers certain space for processing these xerogels into biodegradable (edible) packaging material by usual plastics technologies. Films obtained from the reaction mixture by casting and drying at room temperature after thermal processing (105°C for 4 h) dissolve at room temperature only after 350 h. This effect can be employed for time-controlled releasing of active substances from such biodegradable (edible) packages.


collagen hydrolysate cross-linking dialdehyde starch glass transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Heidemann, A. Hein, R. Moldehn and Ch. Knöker, Leder, 47 (1991) 133.Google Scholar
  2. 2.
    K. Kolomaznik, M. Mladek, F. Langmaier and D. Janacova, JALCA, 95 (2000) 55.Google Scholar
  3. 3.
    F. Langmaier, K. Kolomaznik and M. Mládek, Materialien des 1. Freiberger Kollagensymposium, Freiberg/Sa 1996, pp. 120–124, FILK, Freiberg 1996.Google Scholar
  4. 4.
    F. Langmaier, M. Mladek, K. Kolomaznik and S. Sukop, Int. J. Cosmetic Sci., 23 (2001) 193.CrossRefGoogle Scholar
  5. 5.
    F. Langmaier, M. Mladek, K. Kolomaznik and A. Maly, Tenside, Surfactants, Detergents, 39 (2000) 47.Google Scholar
  6. 6.
    F. Langmaier, J. Sivarová, M. Mladek and K. Kolomazník, J. Therm. Anal. Cal., 75 (2004) 205.CrossRefGoogle Scholar
  7. 7.
    F. Langmaier, J. Sivarova, K. Kolomaznik and M. Mladek, J. Therm. Anal. Cal., 76 (2004) 1015.CrossRefGoogle Scholar
  8. 8.
    F. Langmaier, P. Mokrejs, K. Kolomaznik, M. Mladek and R. Karnas, J. Therm. Anal. Cal., 88 (2007) 857.CrossRefGoogle Scholar
  9. 9.
    R. H. Wilson, Proc. Soc. Exp. Biol. Med., 102 (1959) 735.Google Scholar
  10. 10.
    H. Onishi and T. Nagai, Int. J. Pharm., 30 (1986) 133.CrossRefGoogle Scholar
  11. 11.
    F. Langmaier, P. Mokrejs, K. Kolomaznik and M. Mladek, Waste Management — in press (2006).Google Scholar
  12. 12.
    BS 757 1979. British Standard Methods of Sampling and Testing Gelatins.Google Scholar
  13. 13.
    Te. K. Nijenhuis, Physical Network Polymers and Gels, W. Burchard and B. S. Ross-Murphy, Eds, Elsevier, London, New York 1990, pp. 15–33.Google Scholar
  14. 14.
    P. V. Kozlov and G. I. Burdygina, Polymer, 24 (1983) 1.CrossRefGoogle Scholar
  15. 15.
    H. Bohidar and S. Jena, J. Chem. Phys., 98 (1993) 8970.CrossRefGoogle Scholar
  16. 16.
    S. Nazal and Y. Wang, Int. J. Pharm., 230 (2001) 35.CrossRefGoogle Scholar
  17. 17.
    A. Gennadios, A. Handa, G. W. Froning, C. L. Keller and M. A. Hanna, J. Agric. Food Chem., 46 (1998) 1297.CrossRefGoogle Scholar
  18. 18.
    I. V. Yannas, J. Macromol. Sci. Chem., C7 (1972) 49.Google Scholar
  19. 19.
    R. A. De Carvalho and C. F. R. Grosso, Food Hydrocolloids, 18 (2004) 717.CrossRefGoogle Scholar
  20. 20.
    I. V. Yannas and A. V. Tobolski, Eur. Polym. J., 4 (1968) 257.CrossRefGoogle Scholar
  21. 21.
    P. J. A. Sobral and A. M. Q. B. Habitante, Food Hydrocolloids, 15 (2001) 377.CrossRefGoogle Scholar
  22. 22.
    A. S. Marshalll and S. E. B. Petrie, J. Photographic Sci., 28 (1980) 128.Google Scholar
  23. 23.
    T. Hatakeyama and F. X. Quinn, Thermal Analysis. Fundamentals and Applications to Polymer Science, J. Wiley and Sons, New York 1999, pp. 90–91.Google Scholar
  24. 24.
    A. Bigi, S. Panzavolta and K. Rubini, J. Polym. Environ., 12 (2004) 65.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • F. Langmaier
    • 1
    Email author
  • M. Mládek
    • 1
  • P. Mokrejš
    • 1
  • K. Kolomazník
    • 1
  1. 1.Institute of Polymer Engineering, Faculty of TechnologyTomas Bata UniversityZlínCzech Republic

Personalised recommendations