Journal of Thermal Analysis and Calorimetry

, Volume 89, Issue 2, pp 459–464 | Cite as

The influence of cross-linking agents on ring-opening metathesis polymerized thermosets



The addition of suitable cross-linking agents with norbornene-based monomers has significant effects on the thermal properties of the resulting polymers formed by olefin metathesis. Ethylidene norbornene (ENB) and endo-dicyclopentadiene (endo-DCPD) were mixed separately with various loadings of three different cross-linking agents and then polymerized with the addition of Grubbs’ catalyst. The polymerization kinetics and resulting glass transition temperature (Tg) of the systems were evaluated by differential scanning calorimetry (DSC).

The addition of the first cross-linking agent, norbornadiene (CL-1), to both endo-DCPD and ENB resulted in decreasing glass transition temperatures with increasing concentrations. In contrast, the addition of the other two cross-linking agents (CL-2 and CL-3), which were both custom synthesized bifunctional norbornyl systems, to both endo-DCPD and ENB resulted in a monotonic increases in Tg with cross-linker concentration. By tailoring the loading of these custom cross-linking agents, the properties of these polymer systems can be controlled for various applications, including self-healing composites.


cross-linking agent dicyclopentadiene glass transition temperature ROMP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. R. Buchmeiser, Chem. Rev., 100 (2001) 1565.CrossRefGoogle Scholar
  2. 2.
    P. Schwab, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 100 (1996) 118.Google Scholar
  3. 3.
    S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown and S. Viswanathan, Nature, 409 (2001) 794.CrossRefGoogle Scholar
  4. 4.
    J. D. Rule and J. S. Moore, Macromolecules, 35 (2002) 7878.CrossRefGoogle Scholar
  5. 5.
    A. G. M. Barrett, B. T. Hopkins and J. Köbberling, Chem. Rev., 102 (2002) 3301.CrossRefGoogle Scholar
  6. 6.
    B. S. Lee, S. Mahajan, B. Clapham and K. D. Janda, J. Org. Chem., 69 (2004) 3319.CrossRefGoogle Scholar
  7. 7.
    A. G. M. Barrett, B. T. Hopkins, A. C. Love and L. Tedeschi, Org. Lett., 6 (2004) 835.CrossRefGoogle Scholar
  8. 8.
    A. M. Harned, M. Zhang, P. Vedantham, S. Mukherjee, R. H. Herpel, D. L. Flynn and P. R. Hanson, Aldrichim. Acta, 38 (2005) 3.Google Scholar
  9. 9.
    G. L. Nelson and C.-L. Kuo, Synthesis, 1975 (1975) 105.CrossRefGoogle Scholar
  10. 10.
    J. K. Stelle and D. A. Frey, J. Am. Chem. Soc., 81 (1959) 4273.CrossRefGoogle Scholar
  11. 11.
    A. S. Jones, J. D. Rule, J. S. Moore, S. R. White and N. R. Sottos, Chem. Mater., 18 (2006) 1312.CrossRefGoogle Scholar
  12. 12.
    X. Liu, J. K. Lee, S. H. Yoon and M. R. Kessler, J. Appl. Polym. Sci., 101 (2006) 1266.CrossRefGoogle Scholar
  13. 13.
    M. R. Kessler, G. E. Larin and N. Bernklau, J. Therm. Anal. Cal., 83 (2006) 1.CrossRefGoogle Scholar
  14. 14.
    T. A. Davidson, K. B. Wagener and D. B. Priddy, Macromolecules, 29 (1996) 786.CrossRefGoogle Scholar
  15. 15.
    D. R. Kelsey, H. H. Chuah, R. H. Ellison, D. L. Handlin and B. M. Scardino, J. Polym. Sci.: Part A: Polym. Chem., 35 (1997) 3049.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIowa State UniversityAmesUSA
  2. 2.Department of Polymer Science and EngineeringKumoh National Institute of TechnologyGyungbukKorea

Personalised recommendations