Journal of Thermal Analysis and Calorimetry

, Volume 89, Issue 2, pp 453–457 | Cite as

Isothermal cure characterization of dicyclopentadiene

The glass transition temperature and conversion
Article

Abstract

Conversion (α) and the glass transition temperature (Tg) were investigated during the isothermal cure of endo-dicyclopentadiene (DCPD) with a Grubbs catalyst for different temperatures using differential scanning calorimetry. Conversion vs. In (time) data at an arbitrary reference temperature were superposed by horizontal shift and the shift factors were used to calculate an Arrhenius activation energy. Glass transition temperature vs. conversion data fell on a single curve independent of cure temperature, implying that reaction of the norbornene and cyclopentene ring of DCPD proceeds in a sequential fashion. Implications of the isothermal reaction kinetics for self-healing composites are discussed.

Keywords

conversion dicyclopentadiene DSC glass transition temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Wisanrakkit and J. K. Gillham, J. Coat. Technol., 62 (1990) 35.Google Scholar
  2. 2.
    S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriam, E. N. Brown and S. Viswanathan, Nature, 409 (2001) 794.CrossRefGoogle Scholar
  3. 3.
    M. R. Kessler and S. R. White, Composites, Part A, 32 (2001) 683.CrossRefGoogle Scholar
  4. 4.
    E. N. Brown, N. R. Sottos and S. R. White, Exp. Mech., 42 (2002) 372.CrossRefGoogle Scholar
  5. 5.
    M. R. Kessler and S. R. White, J. Polym. Sci.: Part A: Polymer Chemistry, 40 (2002) 2373.CrossRefGoogle Scholar
  6. 6.
    M. R. Kessler, N. R. Sottos and S. R. White, Composites, Part A, 34 (2003) 743.CrossRefGoogle Scholar
  7. 7.
    E. N. Brown, S. R. White and N. R. Sottos, J. Mater. Sci., 39 (2004) 1703.CrossRefGoogle Scholar
  8. 8.
    J. D. Rule, E. N. Brown, N. R. Sottos, S. R. White and J. S. Moore, Adv. Mater., 17 (2005) 205.CrossRefGoogle Scholar
  9. 9.
    E. N. Brown, S. R. White and N. R. Sottos, Compos. Sci. Technol., 65 (2005) 2466.CrossRefGoogle Scholar
  10. 10.
    E. N. Brown, S. R. White and N. R. Sottos, Compos. Sci. Technol., 65 (2005) 2472.Google Scholar
  11. 11.
    M. R. Kessler, G. E. Larin and N. Bernklau, J. Therm. Anal. Cal., 83 (2006) 1.CrossRefGoogle Scholar
  12. 12.
    X. Liu, J. K. Lee, S. H. Yoon and M. R. Kessler, J. Appl. Polym. Sci., 101 (2006) 1266.CrossRefGoogle Scholar
  13. 13.
    A. S. Johns, J. D. Rule, J. S. Moore, S. R. White and N. R. Sottos, Chem. Mater., 18 (2006) 1312.CrossRefGoogle Scholar
  14. 14.
    A. Hale and C. W. Macosko, Macromolecules, 24 (1991) 2610.CrossRefGoogle Scholar
  15. 15.
    A. Hale, ’Handbook of Thermal Analysis and Calorimetry, Vol. 3: Applications to Polymers and Plastics’, 1st Ed., S. Z. D. Cheng, Amsterdam 2002, p. 321.Google Scholar
  16. 16.
    K. J. Ivin and J. C. Mol, ’Olefin Metathesis and Metathesis Polymerization’, Academic Press, London 1997, p. 226.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  1. 1.Department of Polymer Science and EngineeringKumoh National Institute of TechnologyGumi, GyungbukKorea
  2. 2.Department of Materials Science and EngineeringIowa State UniversityAmesUSA

Personalised recommendations