Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Mechanism and kinetics of the formation of zinc pack coatings

Abstract

A zinc deposition method that could be used instead hot-dip galvanizing is pack cementation, where the substrate is heated immersed in a powder mixture containing Zn and a halide activator (NH4Cl). In the present work the mechanism of this process is examined, along with the effect of temperature and heating time on the coating thickness and structure. For this purpose the coating was deposited and characterized with SEM, while the deposition mechanism was investigated with DSC. From the above examination it was deduced that the deposition of Zn takes place with a multiple-step mechanism, which involves several reactions in the gaseous phase including the formation of volatile zinc halides and finally the diffusion of zinc in the crystal lattice of the ferrous substrate. This procedure is accomplished at about 300°C and leads to the growth of a coating composed by two layers referring to Γ and δ phase of the Fe-Zn system. The coating deposition rate seems to be controlled by the zinc diffusion as its determination at 300 and 350°C showed, where it was deduced that the coating thickness is a linear function of the square root of heating time. However the coating structure is not affected by the heating time and temperature.

This is a preview of subscription content, log in to check access.

References

  1. 1

    American Galvanizers Association, Zinc Coatings-Microstructures of Various Zinc Coatings, AGA, Colorado, 2000.

  2. 2

    A. R. Marder, Prog. Mater. Sci., 45 (2000) 191.

  3. 3

    D. Wetzel, Batch hot-dip galvanizing, ASM Handbook, Vol. 5: Surface Engineering, ASM, New York, 1994.

  4. 4

    P. Maass and P. Peissker, Handbuch Feuerverzinken, Wiley-VCH, 1993.

  5. 5

    N. Pistofidis, G. Vourlias, E. Pavlidou, K. Chrissafis, G. Stergioudis, E. K. Polychroniadis and D. Tsipas, J. Therm. Anal. Cal., 84 (2006) 417.

  6. 6

    N. Pistofidis, G. Vourlias, D. Chaliampalias, E. Pavlidou, K. Chrissafis, G. Stergioudis, E. K. Polychroniadis and D. Tsipas, J. Therm. Anal. Cal., 84 (2006) 191.

  7. 7

    N. Pistofidis, G. Vourlias, D. Chaliampalias, E. Pavlidou, G. Stergioudis and E. K. Polychroniadis, Surf. Interface Anal., 38 (2006) 252.

  8. 8

    G. Vourlias, N. Pistofidis, D. Chaliampalias, P. Patsalas, G. Stergioudis and D. Tsipas, Surf. Coat. Technol., 200 (2006) 6594.

  9. 9

    G. Vourlias, N. Pistofidis, D. Chaliampalias, E. Pavlidou, G. Stergioudis and E. K. Polychroniadis, J. Alloys Compd., 416 (2006) 125.

  10. 10

    N. Pistofidis, G. Vourlias, D. Chaliambalias, K. Chrysafis, G. Stergioudis and E. K. Polychroniadis, J. Alloys Compd., 407 (2006) 221.

  11. 11

    G. Vourlias, N. Pistofidis, D. Chaliampalias, K. Chrissafis, E. Pavlidou and G. Stergioudis, J. Therm. Anal. Cal., 87 (2007) 401.

  12. 12

    O. T. de Rincon, J. Ludovic, E. Huerta, N. Romwero, M. F. de Romero, O. Perez, W. Campos and A. Navarro, Mater. Performance, 36 (1997) 28.

  13. 13

    M. Olszak-Humienik, Thermochim. Acta, 378 (2001) 107.

  14. 14

    Clara Fillaux, Thése de Doctorat de l’ Université Paris 6, Paris, 2004.

  15. 15

    B. Nciri and L. Vandenbulcke, J. Less-Com. Met., 95 (1983) 55.

  16. 16

    S. H. Son and F. Tsukihashi, ISIJ Int.,43 (2003) 1356.

  17. 17

    M. Ashby, H. Shercliff and D. Cebon, Materials: Engineering, Science, Processing and Design, BH, London, 2004.

Download references

Author information

Correspondence to K. Chrissafis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vourlias, G., Pistofidis, N., Chrissafis, K. et al. Mechanism and kinetics of the formation of zinc pack coatings. J Therm Anal Calorim 91, 497–501 (2008). https://doi.org/10.1007/s10973-006-8237-3

Download citation

Keywords

  • chemical vapor deposition
  • coating materials
  • DSC characterization
  • pack cementation
  • scanning electron microscopy
  • thermal analysis