Thermal behaviour of CuS (covellite) obtained from copper–thiosulfate system

  • Claudia Maria Simonescu
  • V. S. Teodorescu
  • Oana Carp
  • Luminita Patron
  • Camelia Capatina


Thermal behaviour of CuS (covellite) obtained from the Cu(CH3COO)2·H2O and Na2S2O3·5H2O system, working at different molar ratio (1:6 and 1:4) in presence/absence of NH4VO3, was studied. It was established that the presence of vanadium in the system induces a densification of CuS nodules, but do not change the hexagonal CuS structure. It has an important influence in thermal behaviour of copper sulfide CuS obtained also. The morphological characteristics of CuS play an important role in the thermal stability and the stoichiometry of the thermal decompositions.

Also, the possibility to obtain copper sulfides with greater cooper content was investigated.


copper sulfide thermal oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stuczynski, SM, Kow, YU, Steigerwald, ML 1993J. Organomet. Chem.167449Google Scholar
  2. 2.
    Nair, MTS, Nair, PK 1989Semicond. Sci. Technol.4191CrossRefGoogle Scholar
  3. 3.
    Rieke, PC, Bentjen, SB 1993Chem. Mater.543CrossRefGoogle Scholar
  4. 4.
    Yamamoto, T, Tanaka, Y, Kubota, E, Osakada, K 1993Chem. Mater.51352CrossRefGoogle Scholar
  5. 5.
    Grozdanov, I, Najdoski, M 1995J. Solid State Chem.114469CrossRefGoogle Scholar
  6. 6.
    Reynolds, DC, Leies, G, Antes, LT, Marburger, RE 1954Phys. Rev.96533CrossRefGoogle Scholar
  7. 7.
    Boer, KW 1977Phys. Status Solidi A40435Google Scholar
  8. 8.
    Nair, MTS, Alvarrez-Garcia, G, Estrada-Gasva, CA, Nair, PK 1993J. Electrochem. Soc.140212CrossRefGoogle Scholar
  9. 9.
    Nair, PK, Nair, MT, Fernandez, A, Ocampo, M 1989J. Phys. D.22829CrossRefGoogle Scholar
  10. 10.
    Nair, PK, Garcia, VM, Fernandez, AM, Ruiz, HS, Nair, MTS 1991J. Phys. D.24441CrossRefGoogle Scholar
  11. 11.
    Han, ZH, Li, YP, Zhao, HQ, Yu, SH, Yin, YL, Qian, YT 2000Mater. Lett.44366CrossRefGoogle Scholar
  12. 12.
    Smykatz-Kloss, W 1982J. Thermal. Anal.2315CrossRefGoogle Scholar
  13. 13.
    Smykatz-Kloss, W, Hausmann, K 1993J. Thermal Anal.391209Google Scholar
  14. 14.
    Dunn, JG, Muzenda, C 2001Thermochim. Acta369117CrossRefGoogle Scholar
  15. 15.
    Blachnik, R, Müller, A 2000Termochim. Acta36131CrossRefGoogle Scholar
  16. 16.
    Blachnik, R, Müller, A 2001Thermochim. Acta36647CrossRefGoogle Scholar
  17. 17.
    Ali, BF, Al-Akramawi, WS, Al-Obaidi, KH, Al-Karboli, AH 2004Thermochim. Acta41939CrossRefGoogle Scholar
  18. 18.
    Gao, L, Wang, E, Suoyuan, S, Kang, Z, Lan, Y, Wu, D 2004Solid State Commun.130309CrossRefGoogle Scholar
  19. 19.
    Botelho, JR, Souza, AG, Gondim, AD, Athayde-Filho, PF, Dunstan, PO, Pinheiro, CD, Longo, E, Carvalho, LH 2005J. Therm. Anal. Cal.79309CrossRefGoogle Scholar
  20. 20.
    D’Ars de Figueiredo Jr, JC, De Bellis, VM, Yoshida, MI, Cunha Lins, VF, Cruz Souza, LA 2005J. Therm. Anal. Cal.79313CrossRefGoogle Scholar
  21. 21.
    Chen, SP, Mung, XX, Shuai, O, Jiao, BJ, Gao, SL, Shi, QZ 2006J. Therm. Anal. Cal.86767CrossRefGoogle Scholar
  22. 22.
    Kontny, A, De Wall, H, Sharp, TG, Pósfai, M 2000Am. Mineral.851416Google Scholar
  23. 23.
    Godočiková, E, Baláž, P, Criado, JM, Real, C, Gock, E 2006Thermochim. Acta44019CrossRefGoogle Scholar
  24. 24.
    Jayaweera, SAA, Moss, JH, Wearmouth, A 1989Thermochim. Acta152237CrossRefGoogle Scholar
  25. 25.
    Shah, ID, Khalafalla, SE 1971Metall. Trans.2605Google Scholar
  26. 26.
    Maurell, C 1964Bull. Soc. Française de Minéralogie et Cristallographie87377Google Scholar
  27. 27.
    Bollin, EM,  et al. 1970Chalcogenides, in Differential Thermal AnalysisAcademic PressLondon202R. C. Mackemzie (Ed.)Google Scholar
  28. 28.
    Razouk, RI, Kolta, GA, Mikhail, RS 1962J. Appl. Chem.12190CrossRefGoogle Scholar
  29. 29.
    Shah, ID, Khalafalla, SE 1970Metall. Trans.12151Google Scholar
  30. 30.
    Dunn, JG, Muzenda, C 2001J. Therm. Anal. Cal.641241CrossRefGoogle Scholar
  31. 31.
    Živković, Ž, Štrabac, N, Živković, D, Velonski, V, Mihajlović, I 2005J. Therm. Anal. Cal.79715CrossRefGoogle Scholar
  32. 32.
    Patron, L, Carp, O, Mindru, I, Pascu, M, Stanica, N, Ciupina, V, Segal, E, Brezeanu, M 2003J. Therm. Anal. Cal.72271CrossRefGoogle Scholar
  33. 33.
    Sanders, JP, Gallagher, PK 2003J. Therm. Anal. Cal.72777CrossRefGoogle Scholar
  34. 34.
    Mihajlović, I 2005J. Therm. Anal. Cal.79715CrossRefGoogle Scholar
  35. 35.
    Gotsis, HJ, Barnes, AC, Strange, P 1992J. Phys.: Condens. Matter410461CrossRefGoogle Scholar
  36. 36.
    Takeuchi, Y, Kudoch, Y, Sato, G 1985Z. Kristallogr.173119CrossRefGoogle Scholar
  37. 37.
    Simonescu, CM, Patron, L, Teodorescu, VS, Brezeanu, M, Capatina, C 2006J. Optoelectr. Adv. Mater.8597Google Scholar
  38. 38.
    Simonescu, CM, Teodorescu, VS, Brezeanu, M, Melinescu, A 2005Rev. Chim.56611Google Scholar
  39. 39.
    Klug, HP, Alexander, LE,  et al. 1954X-Ray Diffraction ProceduresWileyNew York461Google Scholar
  40. 40.
    Nakamoto, K,  et al. 1986Infrared and Raman spectra of Inorganic and Coordination Compounds, Ed. 4.J. WileyNew York252Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Claudia Maria Simonescu
    • 1
  • V. S. Teodorescu
    • 2
  • Oana Carp
    • 3
  • Luminita Patron
    • 3
  • Camelia Capatina
    • 4
  1. 1.Department of Inorganic Technology and Environmental Protection, Faculty of Applied Chemistry and Materials ScienceUniversity ‘Politehnica’ of BucharestBucharestRomania
  2. 2.National Institute for Material PhysicsBucharest-MagureleRomania
  3. 3.Institute of Physical and Chemical ‘Ilie Murgulescu’BucharestRomania
  4. 4.Department of Environmental EngineeringUniversity ‘Constantin Brancusi’Targu-JiuRomania

Personalised recommendations