Journal of Thermal Analysis and Calorimetry

, Volume 87, Issue 2, pp 383–393 | Cite as

Influence of aluminium precursor on physico-chemical properties of aluminium hydroxides and oxides

Part III. Al2(SO4)3·18H2O
  • Barbara Pacewska
  • Olga Kluk-Płoskońska
  • D. Szychowski


The process of hydrolysis of aqueous aluminium sulfate was carried on in ammonia medium at 100°C and for different time intervals (0, 20, 39 or 59 h). The products thus obtained were calcined at 550, 900 or 1200°C for 2 h with the aim to obtain aluminium oxides. The materials were studied with the following methods: thermal analysis, IR spectroscopy, X-ray diffraction, low-temperature nitrogen adsorption, adsorption–desorption of benzene vapours and scanning electron microscopy.

Freshly precipitated material was an amorphous basic aluminium sulfate which after prolonged refluxing at elevated temperature in a mother liquor underwent a phase transformation into highly crystalline NH4Al13(SO4)2(OH)6 containing tridecameric unit Al13. It was accompanied by a decrease of specific surface area and the formation of a porous structure less accessible for benzene molecules. Regardless of the duration of the hydrolysis process, all products were characterised with poorly developed porous structure and hydrophilic character. Their calcination at the temperature up to 1200°C resulted in the formation of α-Al2O3 via transition forms of γ/η- and δ-Al2O3. The samples of aluminium oxides obtained after calcination at 550 and 900°C had higher values of specific surface area than starting materials due to processes of dehydroxylation and desulfurization. The process of calcination up to 900°C was reflected in developing of not only porous structure but also hydrophobic character of prepared materials. The S BET values calculated for the oxide samples obtained from aged products of hydrolysis at 1200°C were lower than for the analogous sample prepared without the ageing step. It was concluded that prolonged refluxing at elevated temperature of the products of hydrolysis of aluminium sulfate decreased thermal stability of final aluminium oxides.


metastable aluminium oxides thermal decomposition tridecameric Keggin structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trawczyński, J 1996Appl. Catal. A144195CrossRefGoogle Scholar
  2. 2.
    Prodromou, KP, Pavlatou-Ve, AS 1995Clays Clay Miner.43111CrossRefGoogle Scholar
  3. 3.
    Ramanathan, S, Roy, SK, Bhat, R, Upadhyaya, DD, Biswas, AR 1997Ceram. Int.2345CrossRefGoogle Scholar
  4. 4.
    Pacewska, B, Kluk-Płoskońska, O, Szychowski, D 2006J. Therm. Anal. Cal.85351CrossRefGoogle Scholar
  5. 5.
    Pacewska, B, Kluk-Płoskońska, O, Szychowski, D 2006J. Therm. Anal. Cal.86747Google Scholar
  6. 6.
    Pacewska, B, Szychowski, D, Żmijewski, T,  et al. 2000Computer program for evaluation of parameters of porous structure of solidsForum Chemiczne 2000WarsawGoogle Scholar
  7. 7.
    Bhattacharya, IN, Gochhayat, PK, Mukherjee, PS, Paul, S, Mitra, PK 2004Mater. Chem. Phys.8832CrossRefGoogle Scholar
  8. 8.
    Kloprogge, JT, Geus, JW, Jansen, JBH, Seykens, D 1992Thermochim. Acta209265CrossRefGoogle Scholar
  9. 9.
    Sacks, MD, Tseng, T-Y, Lee, SY 1984Ceram. Bull.63301Google Scholar
  10. 10.
    Pradhan, JK, Bhattacharya, IN, Das, SC, Das, RP, Panda, RK 2000Mater. Sci. Eng.B77185CrossRefGoogle Scholar
  11. 11.
    Duong, LV, Wood, BJ, Kloprogge, JT 2005Mater. Lett.591932CrossRefGoogle Scholar
  12. 12.
    Morterra, C, Magnacca, G 1996Catal. Today27497CrossRefGoogle Scholar
  13. 13.
    Kloprogge, JT, Frost, RL 1999Spectrochim. Acta, Part A551359CrossRefGoogle Scholar
  14. 14.
    Davey, PT, Lukaszewski, GM, Scott, TR 1963Austr. J. Appl. Sci.14137Google Scholar
  15. 15.
    Kato, E, Daimon, K, Nanbu, N 1981J. Am. Ceram. Soc.64436CrossRefGoogle Scholar
  16. 16.
    Johnson, DW, Schnettler, FJ 1981J. Am. Ceram. Soc.53440CrossRefGoogle Scholar
  17. 17.
    Temuujin, J, Jadambaa, Ts, Mackenzie, KJD, Angerer, P, Porte, F, Riley, F 2000Bull. Mater. Sci.23301CrossRefGoogle Scholar
  18. 18.
    Ada, K, Sarikaya, Y, Alemdaroğlu, T, Önal, M 2003Ceram. Int.29513CrossRefGoogle Scholar
  19. 19.
    Mishra, D, Ananad, S, Panda, RK, Das, RP 2002Mater. Lett.53133CrossRefGoogle Scholar
  20. 20.
    Trawczyński, J 1993Przemysł Chemiczny72279Google Scholar
  21. 21.
    Hsu, PaHo, Bates, TF 1964Mineral. Mag.33749CrossRefGoogle Scholar
  22. 22.
    Blendell, JE, Bowen, HK, Coble, RL 1984Ceram. Bull.63797Google Scholar
  23. 23.
    Kara, F, Sahin, G 2000J. Eur. Ceram. Soc.20689CrossRefGoogle Scholar
  24. 24.
    Wang, M, Muhammed, M 1999Nanostruct. Mater.111219CrossRefGoogle Scholar
  25. 25.
    Rousseaux, JM, Weisbecker, P, Muhr, H, Plasari, E 2002Ind. Eng. Chem. Res.416059CrossRefGoogle Scholar
  26. 26.
    IUPAC Reporting Physisorption Data, Pure Appl. Chem., 57 (1985) 603.Google Scholar
  27. 27.
    Pacewska, B, Szychowski, D 2006Przem. Chem.48171Google Scholar
  28. 28.
    Pacewska, B, Szychowski, D 2005J. Therm. Anal. Cal.80687CrossRefGoogle Scholar
  29. 29.
    Nagai, H, Oshima, Y, Hirano, K, Kato, A 1993Br. Ceram. Trans.92113Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Barbara Pacewska
    • 1
  • Olga Kluk-Płoskońska
    • 1
  • D. Szychowski
    • 1
  1. 1.Faculty of Building Engineering, Mechanics and Petrochemistry, Institute of ChemistryWarsaw University of TechnologyPłockPoland

Personalised recommendations