Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 91, Issue 2, pp 409–412 | Cite as

Application of non-isothermal cure kinetics on the interaction of poly(ethylene terephthalate) — Alkyd resin paints

  • D. S. DiasEmail author
  • M. S. Crespi
  • C. A. Ribeiro
  • J. L. S. Fernandes
  • H. M. G. Cerqueira
Article

Abstract

Samples of paint (P), reused PET (PET-R) and paint/PET-R mixtures (PPET-R) were evaluated using DSC to verify their physical-chemical properties and thermal behavior. Films from paints and PPET-R are visually similar. It was possible to establish that the maximum amount of PET-R that can be added to paint without significantly altering its filming properties is 2%. The cure process (80–203°C) was identified through DSC curves. The kinetic parameters, activation energy (E a) and Arrhenius parameters (A) for the samples containing 0.5 to 1% of PET-R, were calculated using the Flynn-Wall-Ozawa isoconversional method. It was observed that for greater amounts of PET-R added, there is a decrease in the E a values for the cure process. A Kinetic compensation effect (KCE), represented by the equation InA=−2.70+0.31E a was observed for all the samples. The most suitable kinetic model to describe this cure process is the autocatalytic Šesták-Berggreen, model applied to heterogeneous systems.

Keywords

paint paint/PET-R mixture PET 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. B. Mano and L. C. Mendes, Introdução a polímeros, Edgard Blucher Ltda, São Paulo 1999.Google Scholar
  2. 2.
    C. Kawamura; K. Ito, R. Nishida, I. Yoshihara and N. Numa, Prog. Org. Coat, 45 (2002) 185.CrossRefGoogle Scholar
  3. 3.
    G. C. A. Amaral, M. S. Crespi, C. A. Ribeiro, M. Y. Hikosaka, L. S. Guinese and A. F. Santos, J. Therm. Anal. Cal., 79 (2005) 375.CrossRefGoogle Scholar
  4. 4.
    J. H. Flynn and J. Wall, Polym. Lett., 4 (1966) 323.CrossRefGoogle Scholar
  5. 5.
    T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.CrossRefGoogle Scholar
  6. 6.
    T. Ozawa, J. Thermal Anal., 2 (1970) 301.CrossRefGoogle Scholar
  7. 7.
    T. Ozawa, Polymer, 12 (1971) 150.CrossRefGoogle Scholar
  8. 8.
    J. Málek, J. M. Criado, J. Šesták and J. Militký, Thermochim. Acta, 153 (1989) 429.CrossRefGoogle Scholar
  9. 9.
    J. Málek, J. Šesták, F. Rouquerol, J. Rouquerol, J. M. Criado and A. Ortega, J. Thermal Anal., 38 (1992) 71.CrossRefGoogle Scholar
  10. 10.
    J. Málek, E. Cernesková, J. Svejka and G. Van der Plaats, Thermochim. Acta, 280/281 (1996) 353.CrossRefGoogle Scholar
  11. 11.
    J. Malek, J. Therm. Anal. Cal., 56 (1999) 763.CrossRefGoogle Scholar
  12. 12.
    J. Malek, Thermochim. Acta, 355 (2000) 239.CrossRefGoogle Scholar
  13. 13.
    J. Málek, T. Mitisuhash and J. M. Criado, J. Mater. Res., 16 (2001) 1862.CrossRefGoogle Scholar
  14. 14.
    A. R. Silva, M. S. Crespi, C. A. Ribeiro, S. C. Oliveira and M. R. S. Silva, J. Therm. Anal. Cal., 75 (2004) 401.CrossRefGoogle Scholar
  15. 15.
    N. Koga, Thermochim. Acta, 258 (1995) 145.CrossRefGoogle Scholar
  16. 16.
    R. MacCallun and M. V. Munro, Thermochim. Acta, 203 (1992) 457.CrossRefGoogle Scholar
  17. 17.
    C. Gupta and S. G. Viswanath, J. Thermal Anal., 47 (1996) 1081.CrossRefGoogle Scholar
  18. 18.
    T. P. Prasad, S. B. Kanungo and H. S. Ray, Thermochim. Acta, 203 (1992) 503.CrossRefGoogle Scholar
  19. 19.
    M. E. Brown and A. K. Galwey, Thermochim. Acta, 387 (2002) 173.CrossRefGoogle Scholar
  20. 20.
    A. K. Galwey, Thermochim. Acta, 413 (2004) 139.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • D. S. Dias
    • 1
    Email author
  • M. S. Crespi
    • 1
  • C. A. Ribeiro
    • 1
  • J. L. S. Fernandes
    • 1
  • H. M. G. Cerqueira
    • 1
  1. 1.Instituto de QuímicaSão PauloBrazil

Personalised recommendations