Journal of Thermal Analysis and Calorimetry

, Volume 87, Issue 1, pp 143–147 | Cite as

Thermodynamic study of the thermal denaturation of a globular protein in the presence of different ligands

  • Elena Blanco
  • J. M. Ruso
  • J. Sabín
  • G. Prieto
  • F. Sarmiento
regular

Abstract

By means of difference UV-Vis spectra, the thermal denaturation of catalase has been studied in the presence of different surfactants: sodium perfluorooctanoate, sodium octanoate and sodium dodecanoate. These results indicate that hydrogenated surfactants play two opposite roles in the folding and stability of catalase, they act as a structure stabiliser at a low molar concentrations (enhancing Tm) and as a destabilizer at a higher concentrations (diminishing Tm). Meanwhile sodium perfluorooctanoate enhances Tm in the whole concentration range. An approach for the determination of the heat capacity, enthalpy and entropy has been made, finding that for the three studied surfactants, at all concentrations, the enthalpy term dominates the entropy term.

Keywords

catalase ligands thermal unfolding thermodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Creighton, TE,  et al. 1992Protein FoldingW. H. Freeman, Ed.New YorkGoogle Scholar
  2. 2.
    Pain, RH,  et al. 1994Mechanism of Protein FoldingIRL PressUKGoogle Scholar
  3. 3.
    Michnik, A, Michalik, K, Kluczewska, A, Drzazga, Z 2006J. Therm. Anal. Cal.84113CrossRefGoogle Scholar
  4. 4.
    Dergez, T, Könczöl, F, Farkas, N, Belágyi, J, Lőrinczy, D 2005J. Therm. Anal. Cal.80445CrossRefGoogle Scholar
  5. 5.
    Manetto, GD, La Rosa, C, Grasso, DM, Milardi, D 2005J. Therm. Anal. Cal.80263CrossRefGoogle Scholar
  6. 6.
    Ruso, JM, Taboada, P, Martinez-Landeira, P, Prieto, G, Sarmiento, F 2001J. Phys. Chem. B1052644CrossRefGoogle Scholar
  7. 7.
    Ruso, JM, González-Pérez, A, Prieto, G, Sarmiento, F 2003Int. J. Biol. Macromol.3367CrossRefGoogle Scholar
  8. 8.
    Ruso, JM, González-Pérez, A, Prieto, G, Sarmiento, F 2004Colloids Surf. A24945CrossRefGoogle Scholar
  9. 9.
    Blanco, E, Messina, P, Ruso, JM, Prieto, G, Sarmiento, F 2006J. Phys. Chem. B11011369CrossRefGoogle Scholar
  10. 10.
    Schonbaum, GR, Chance, B,  et al. 1976The EnzymesAcademicNew YorkGoogle Scholar
  11. 11.
    Pace, CN 1990Tibtech893Google Scholar
  12. 12.
    Kaushik, JK, Bhat, R 1998J. Phys. Chem. B1027058CrossRefGoogle Scholar
  13. 13.
    Deep, S, Ahluwalia, JC 2001Phys. Chem. Chem. Phys.34583CrossRefGoogle Scholar
  14. 14.
    Vieira, EP, Hermes, H, Möhwald, H 2003Biochim. Biophys. Acta16456Google Scholar
  15. 15.
    Moriyama, Y, Takeda, K 1999Langmuir152003CrossRefGoogle Scholar
  16. 16.
    Vermeer, AWP, Norde, W 2000Colloids Surf. A161139CrossRefGoogle Scholar
  17. 17.
    Sesta, B, Gente, G, Ioviono, A, Laureti, F, Michiotti, P, Paiusco, O, Palacios, OAC, Persi, L, Princi, A, Sallustio, S, Sarnthein-Graf, C, Capalbi, A, La Mesa, C 2004J. Phys. Chem. B1083036CrossRefGoogle Scholar
  18. 18.
    Makhatadze, GI, Privalov, PL 1992J. Mol. Biol.226491CrossRefGoogle Scholar
  19. 19.
    Pfeil, W, Privalov, PL 1976Biophys. Chem.433CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Elena Blanco
    • 1
  • J. M. Ruso
    • 1
  • J. Sabín
    • 1
  • G. Prieto
    • 1
  • F. Sarmiento
    • 1
  1. 1.Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of PhysicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations