Journal of Thermal Analysis and Calorimetry

, Volume 87, Issue 1, pp 199–203 | Cite as

Interaction of gadolinium with phospholipids bilayer membranes

  • J. Sabín
  • G. Prieto
  • Elena Blanco
  • J. M. Ruso
  • Roberta Angelini
  • F. Bordi
  • F. Sarmiento
regular

Abstract

The effects of concentration of gadolinium ions Gd3+ on dipalmitoyl L-α-phosphatidylcholine (DPPC) unilamellar vesicles in aqueous media were studied by photon correlation spectroscopy (PCS) and differential scanning calorimeter. The theoretical predictions of the colloidal stability of liposomes were followed using the Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. Changes in the size of liposomes were observed as Gd3+ concentration increases, suggesting that this cation induces the aggregation of vesicles. To determine the effect of Gd3+ on the transition temperature (Tc) and on the enthalpy (ΔHc) associated with the process differential scanning calorimetry (DSC) has been used. The addition of the metal ion provided DSC curves with different behavior to DPPC bilayer.

Keywords

colloidal stability DPPC vesicles DSC gadolinium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weissig, V, Babich, J, Torchilin, V 2000Colloid Surf. B: Biointerfaces18293CrossRefGoogle Scholar
  2. 2.
    Raymond, KN, Pierre, VC 2005Bioconjugate Chem.163CrossRefGoogle Scholar
  3. 3.
    Soto, C, Rodríguez, PH, Monasterio, O 1996Biochemistry356337CrossRefGoogle Scholar
  4. 4.
    Lasic, DD,  et al. 1993Liposomes, from Physics to ApplicationsElsevierAmsterdamGoogle Scholar
  5. 5.
    Finkelstein, A, Ptitsyn, OB,  et al. 2002Protein PhysicsAcademic PressLondonChapter 5Google Scholar
  6. 6.
    Hammoudah, MM, Nir, S, Isac, T, Kornhauser, R, Stewart, TP, Hui, SW, Vaz, WLC 1979Biochim. Biophys. Acta558338CrossRefGoogle Scholar
  7. 7.
    Bentz, J, Alford, D, Cohen, J, Duzgunes, N 1988Biophys. J.53593Google Scholar
  8. 8.
    Petersheim, M, Sun, J 1989Biophys. J.55631CrossRefGoogle Scholar
  9. 9.
    Jones, MN, Hammond, K, Reboiras, MD, Acerete, C, Jackson, SM, Nogueira, M, Nicholas, AR 1986Colloids Surf.1875CrossRefGoogle Scholar
  10. 10.
    Averbakh, A, Pavlov, D, Lobyshev, VI 2000J. Therm. Anal. Cal.62101CrossRefGoogle Scholar
  11. 11.
    Averbakh, A, Lobyshev, VI 2000J. Biochem. Biophys. Methods4523CrossRefGoogle Scholar
  12. 12.
    Tanaka, T, Tamba, Y, Masum, SMd, Yamashita, Y, Yamazaki, M 2002Biochim. Biophys. Acta1564173CrossRefGoogle Scholar
  13. 13.
    Sabín, J, Prieto, G, Sennato, S, Ruso, JM, Angelini, R, Bordi, F, Sarmiento, F 2006Phys. Rev. E74031913CrossRefGoogle Scholar
  14. 14.
    Verwey, EJB, Overbeek, JThG,  et al. 1948Theory of the Stability of Lyophobic ColloidsElsevierAmsterdamGoogle Scholar
  15. 15.
    Hamaker, HC 1936Rec. Trav. Chim.551015CrossRefGoogle Scholar
  16. 16.
    Hamaker, HC 1937Rec. Trav. Chim.56727CrossRefGoogle Scholar
  17. 17.
    Tadmor, R 2001J. Phys.: Condens. Matter13L195CrossRefGoogle Scholar
  18. 18.
    Romero Cano, MS, Martín Rodríguez, A, Chauveteau, G, de las Nieves, FJ 1988J. Colloid Interface Sci.198273CrossRefGoogle Scholar
  19. 19.
    Peula, JM, Santos, R, Forcada, J, Hidalgo Álvarez, R, de las Nieves, FJ 1998Langmuir146377CrossRefGoogle Scholar
  20. 20.
    Lyklema, J 1977J. Colloid Interface Sci.58242CrossRefGoogle Scholar
  21. 21.
    Bordi, F, Cametti, C 2002Colloid Surf. B: Biointerfaces26341CrossRefGoogle Scholar
  22. 22.
    Inoue, T, Minami, H, Shimozawa, R, Sugihara, G 1992J. Colloid Interface Sci.152493CrossRefGoogle Scholar
  23. 23.
    Sabín, J, Prieto, G, Messina, PV, Ruso, JM, Hidalgo-Alvarez, R, Sarmiento, F 2005Langmuir2110968CrossRefGoogle Scholar
  24. 24.
    Ohsima, H, Inoko, Y, Mitsu, T 1982J. Colloid Interface Sci.8657CrossRefGoogle Scholar
  25. 25.
    Taylor, KMG, Morris, RM 1995Thermochim. Acta248289CrossRefGoogle Scholar
  26. 26.
    Bonora, S, Fini, G, Piccirilli, B 2000J. Therm. Anal. Cal.61731CrossRefGoogle Scholar
  27. 27.
    Repáková, J, Holopainen, JM, Morrow, MR, McDonald, MC, Capková, P, Vattulainen, I 2005Biophys. J.883398CrossRefGoogle Scholar
  28. 28.
    Urban, E, Bóta, A, Kocsis, B, Lohner, L 2005J. Therm. Anal. Cal.82463CrossRefGoogle Scholar
  29. 29.
    Könczöl, F, Farkas, N, Derguez, T, Belágyi, J, Lőrinczy, D 2005J. Therm. Anal. Cal.82201CrossRefGoogle Scholar
  30. 30.
    Pappalardo, M, Milardi, D, Graso, M, La Rosa, C 2005J. Therm. Anal. Cal.80413CrossRefGoogle Scholar
  31. 31.
    Jain, MK, Wu, NM 1977J. Membrane Biol.34157CrossRefGoogle Scholar
  32. 32.
    Israelachvili, JN,  et al. 1995Intermolecular and Surface Forces, 2nd Ed.Academic PressSan Diego, CAGoogle Scholar
  33. 33.
    Makino, K, Yamada, T, Kimura, M, Oka, T, Ohshima, H, Kondo, T 1991Biophys. Chem.41175CrossRefGoogle Scholar
  34. 34.
    Brown, MF, Seelig, J 1977Nature269721CrossRefGoogle Scholar
  35. 35.
    Akutsu, H, Nagamori, T 1991Biochem.304510CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J. Sabín
    • 1
  • G. Prieto
    • 1
  • Elena Blanco
    • 1
  • J. M. Ruso
    • 1
  • Roberta Angelini
    • 2
    • 3
  • F. Bordi
    • 2
    • 3
  • F. Sarmiento
    • 1
  1. 1.Grupo de Biofísica e Interfases, Departamento de Física Aplicada, Facultade de FísicaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Dipartimento di FisicaUniversità di Roma ‘La Sapienza’RomaItaly
  3. 3.INFM CRS-SOFTUnità di RomaRomaItaly

Personalised recommendations