Journal of Thermal Analysis and Calorimetry

, Volume 87, Issue 1, pp 297–300 | Cite as

Development of a universal constant rate thermal analysis system for being used with any thermoanalytical instrument

  • J. M. Criado
  • L. A. Pérez-Maqueda
  • M. J. Diánez
  • P. E. Sánchez-Jiménez


The SCTA method implies to control the temperature in such a way that the reaction rate changes with the time according to a function previously defined by the user. Constant Rate Thermal Analysis (CRTA) is one of the most commonly used SCTA methods and implies achieving a temperature profile at which the reaction rate remains constant all over the process at a value previously selected by the user. This method permits to minimize the influence of heat and mass transfer phenomena on the forward reaction. The scope of this work is to develop a universal CRTA temperature controller that could be adapted to any thermoanalytical device. The thermoanalytical signal is programmed to follow a preset linear trend by means of a conventional controller that at the time controls a second conventional temperature programmer that forces the temperature to change for achieving the trend programmed for the thermoanalytical signal. Examples of the performance of this control system with a Thermobalance and a Thermomechanical Analyser (TMA) are given.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pérez-Maqueda, LA, Sánchez-Jiménez, PE, Criado, JM 2005Int. J. Chem. Kinet.37658CrossRefGoogle Scholar
  2. 2.
    Shánelová, J, Málek, J, Alcalá, MD, Criado, JM 2005J. Non-Cryst. Solids351557CrossRefGoogle Scholar
  3. 3.
    Pérez-Maqueda, LA, Sánchez-Jiménez, PE, Criado, JM 2005Polymer462950CrossRefGoogle Scholar
  4. 4.
    Budugreac, P, Criado, JM, Gotor, FJ, Málek, J, Pérez-Maqueda, LA, Segal, E 2004Int. J. Chem. Kinet.36309CrossRefGoogle Scholar
  5. 5.
    Svadlák, D, Shánelová, J, Málek, J, Pérez-Maqueda, LA, Criado, JM, Mitsuhashi, T 2004Thermochim. Acta414137CrossRefGoogle Scholar
  6. 6.
    Pérez-Maqueda, L.A, Gotor, FJ, Málek, J, Koga, N 2003J. Therm. Anal. Cal.72901CrossRefGoogle Scholar
  7. 7.
    Pérez-Maqueda, LA, Criado, JM, Real, C 2002J. Am. Ceram. Soc.85763CrossRefGoogle Scholar
  8. 8.
    Málek, J, Mitsuhashi, T, Criado, JM 2001J. Mater. Res.161862Google Scholar
  9. 9.
    Gotor, FJ, Criado, JM, Málek, J 2001J. Am. Ceram. Soc.841797CrossRefGoogle Scholar
  10. 10.
    Papageorgiou, PP, Achilias, DS, Bikiaris, DN, Karayannidis, GP 2006J. Therm. Anal. Cal.8485CrossRefGoogle Scholar
  11. 11.
    Cheng, Y, Xiao, HN, Guo, WM, Guo, WM 2006Thermochim. Acta444173CrossRefGoogle Scholar
  12. 12.
    Saha, B, Maiti, AK, Ghoshal, AK 2006Thermochim. Acta44446CrossRefGoogle Scholar
  13. 13.
    Sides, LCS, Araujo, AAS, Santos- Filho, M, Matos, JR 2006J. Therm. Anal. Cal.84441CrossRefGoogle Scholar
  14. 14.
    Liu, F, Yang, GC, Wang, HF, Chen, Z, Zhou, YH 2006Thermochim. Acta443212CrossRefGoogle Scholar
  15. 15.
    Mehta, N, Kumar, A 2006J. Therm. Anal. Cal.83669CrossRefGoogle Scholar
  16. 16.
    Vyazovkin, S 2006J. Therm. Anal. Cal.8345CrossRefGoogle Scholar
  17. 17.
    Howell, BA 2006J. Therm. Anal. Cal.8353CrossRefGoogle Scholar
  18. 18.
    Simon, P, Illekova, E, Mojundar, SC 2006J. Therm. Anal. Cal.8367CrossRefGoogle Scholar
  19. 19.
    Pielichowski, K, Swierz-Motysia, B 2006J. Therm. Anal. Cal.83207CrossRefGoogle Scholar
  20. 20.
    Simon, P 2005J. Therm. Anal. Cal.82651CrossRefGoogle Scholar
  21. 21.
    Brown, ME 2005J. Therm. Anal. Cal.82651CrossRefGoogle Scholar
  22. 22.
    Ozawa, T 2005J. Therm. Anal. Cal.82687CrossRefGoogle Scholar
  23. 23.
    Ismail, IMK, Hawkins, T 2005Thermochim. Acta43932CrossRefGoogle Scholar
  24. 24.
    Wang, JM, Laborie, MPG, Wolcott, MP 2005Thermochim. Acta43968CrossRefGoogle Scholar
  25. 25.
    Rouquerol, J 1988Thermochim. Acta144209CrossRefGoogle Scholar
  26. 26.
    Reading, M, Dollimore, D, Rouquerol, J, Rouquerol, F 1989J. Thermal Anal.37775Google Scholar
  27. 27.
    Rouquerol, F, Laureiro, Y, Rouquerol, J 1993Solid State Ionics63363CrossRefGoogle Scholar
  28. 28.
    Bordère, S, Rouquerol, F, Lawellin, PL, Rouquerol, J 1996Thermochim. Acta2821CrossRefGoogle Scholar
  29. 29.
    Criado, JM, Rouquerol, F, Rouquerol, J 1980Thermochim. Acta38117CrossRefGoogle Scholar
  30. 30.
    Reading, M,  et al. 1998Handbook of Thermal Analysis and CalorimetryElsevierAmsterdamVol. 1, p. 423P. K. Gallagher (Ed)Google Scholar
  31. 31.
    Koga, N, Criado, JM 1998Int. J. Chem. Kinet.30737CrossRefGoogle Scholar
  32. 32.
    Pérez-Maqueda, LA, Criado, JM, Gotor, FJ 2002Int. J. Chem. Kinet.34184CrossRefGoogle Scholar
  33. 33.
    Criado, JM, Ortega, A, Gotor, FJ 1990Thermochim. Acta157171CrossRefGoogle Scholar
  34. 34.
    Gotor, FJ, Macías, M, Ortega, A, Criado, JM 2000Phys. Chem. Miner.27495CrossRefGoogle Scholar
  35. 35.
    Gotor, FJ, Criado, JM, Málek, J, Koga, N 2000J. Phys. Chem. A10410777CrossRefGoogle Scholar
  36. 36.
    Pérez-Maqueda, LA, Criado, JM, Gotor, FJ, Málek, J 2002J. Phys. Chem. A1062862CrossRefGoogle Scholar
  37. 37.
    Barnes, PA, Parkes, GMB, Brown, DR, Charsley, EL 1995Thermochim. Acta269665CrossRefGoogle Scholar
  38. 38.
    Baden, E, Llewellyn, P, Falconis, JM, Jourdan, C, Veesler, S, Boistelle, R, Rouquerol, F 1998J. Solid State Chem.13937CrossRefGoogle Scholar
  39. 39.
    Ichihara, S, Endo, A, Arii, T 2000Thermochim. Acta360179CrossRefGoogle Scholar
  40. 40.
    Tiernan, MJ, Barnes, PA, Parkes, GMB 2001J. Phys. Chem. B105220CrossRefGoogle Scholar
  41. 41.
    Nahdi, K, Llewellyn, P, Rouquerol, F, Rouquerol, J, Ariguib, N.K, Ayedi, M.T 2002Thermochim. Acta390123CrossRefGoogle Scholar
  42. 42.
    Criado, JM, Pérez-Maqueda, LA,  et al. 2003Sample Controlled Thermal Analysis, Chapter 4 ('SCTA and Kinetics')Kluwer Academic PublishersDordrecht, The Netherlands62O. T. Sorensen and J. Rouquerol (Eds)Google Scholar
  43. 43.
    Stacey, MH 1987Langmuir3681CrossRefGoogle Scholar
  44. 44.
    Pérez-Maqueda, LA, Criado, JM, Real, C, Subrt, J, Bohácek, J 1999J. Mater. Chem.91839CrossRefGoogle Scholar
  45. 45.
    Pérez-Maqueda, LA, Criado, JM, Subrt, J, Real, C 1999Catal. Lett.60151CrossRefGoogle Scholar
  46. 46.
    Chopra, GS, Real, C, Alcalá, MD, Pérez-Maqueda, LA, Subrt, J, Criado, JM 1999Chem. Mater.111128CrossRefGoogle Scholar
  47. 47.
    Agarwall, G, Speyer, RF, Hakenberger, WS 1996J. Mater. Res.11671Google Scholar
  48. 48.
    Agarwall, G, Speyer, RF 1996J. Mater. Res.11671Google Scholar
  49. 49.
    Chehimi-Moumen, F, Llewellyn, P, Rouquerol, F, Vacquier, G, Hassem-Chehimi, DB, Ferid, M, Trabelsi-Ayadi, M 2005J. Therm. Anal. Cal.82783CrossRefGoogle Scholar
  50. 50.
    Llewellyn, P, Rouquerol, J 2003J. Therm. Anal. Cal.721099CrossRefGoogle Scholar
  51. 51.
    Fesenko, EA, Barnes, PA, Parkes, GMB, Brown, DR, Naderi, M 2003J. Therm. Anal. Cal.721103CrossRefGoogle Scholar
  52. 52.
    Monnereau, O, Tortet, L, Llewellyn, P, Rouquerol, F, Vackier, G 2003Solid State Ionics157163CrossRefGoogle Scholar
  53. 53.
    Dawson, EA, Parkes, GMB, Barnes, PA, Chinn, MJ 2003Carbon41571CrossRefGoogle Scholar
  54. 54.
    Dawson, EA, Parkes, GMB, Barnes, PA, Chinn, MJ, Pears, LA, Hindmarsh, CJ 2002Carbon402897CrossRefGoogle Scholar
  55. 55.
    Fesenko, EA, Barnes, PA, Parkes, GNB, Dawson, EA, Tiernan, MJ 2002Top. Catal.19283CrossRefGoogle Scholar
  56. 56.
    Real, C, Alcalá, MD, Criado, JM 2004J. Am. Ceram. Soc.8775CrossRefGoogle Scholar
  57. 57.
    Alcalá, MD, Criado, JM, Gotor, FJ, Real, C 2006J. Mater. Sci.411993CrossRefGoogle Scholar
  58. 58.
    Budrugeac, P, Segal, E, Pérez-Maqueda, LA, Criado, JM 2004Polym. Degrad. Stabil.84311CrossRefGoogle Scholar
  59. 59.
    Arii, T, Ichihara, S, Nakagawa, H, Fujii, N 1998Thermochim. Acta319139CrossRefGoogle Scholar
  60. 60.
    Kim, S 2001Waste Manage. Res.21609CrossRefGoogle Scholar
  61. 61.
    Jiménez, A, Berenguer, V, López, J, Sánchez, A 1993J. Appl. Polym. Sci.501565CrossRefGoogle Scholar
  62. 62.
    Marcilla, A, Beltrán, M 1999Polym. Degrad. Stab.64127CrossRefGoogle Scholar
  63. 63.
    Spalak, MJP, van Kasten, JMN, Drinkenburg, AAH 2000Comput. Theor. Polym. Sci.10481CrossRefGoogle Scholar
  64. 64.
    Miranda, R, Yang, J, Roi, C, Vasile, C 2001Polym. Degrad. Stab.72469CrossRefGoogle Scholar
  65. 65.
    Karayildirim, T, Yanik, J, Yuksel, M, Saglam, M, Vasile, C, Bockhorn, H 2006J. Anal. Appl. Pyrolysis75112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • J. M. Criado
    • 1
  • L. A. Pérez-Maqueda
    • 1
  • M. J. Diánez
    • 1
  • P. E. Sánchez-Jiménez
    • 1
  1. 1.Instituto de Ciencia de Materiales de SevillaCentro Mixto Universidad de Sevilla-C.S.I.C.SevillaSpain

Personalised recommendations