Journal of Thermal Analysis and Calorimetry

, Volume 87, Issue 3, pp 743–746 | Cite as

Thermal study of TiO2–CeO2 yellow ceramic pigment obtained by the Pechini method

  • S. F. Santos
  • M. C. de Andrade
  • J. A. Sampaio
  • A. B. da Luz
  • T. Ogasawara


TiO2–CeO2 oxides for application as ceramic pigments were synthesized by the Pechini method. In the present work the polymeric network of the pigment precursor was studied using thermal analysis. Results obtained using TG and DTA showed the occurrence of three main mass loss stages and profiles associated to the decomposition of the organic matter and crystallization. The kinetics of the degradation was evaluated by means of TG applying different heating rates. The activation energies (Ea) and reaction order (n) for each stage were determined using Horowitz–Metzger, Coats–Redfern, Kissinger and Broido methods. Values of Ea varying between 257–267 kJ mol–1 and n=0–1 were found. According to the kinetic analysis the decomposition reactions were diffusion controlled.


kinetic study mixed oxide Pechini method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bondioli, F, Manfredini, T, Oliveira, APN 1998Cerâmica Industrial34Google Scholar
  2. 2.
    Sulcová, P 2000Dyes Pigm.47285CrossRefGoogle Scholar
  3. 3.
    Aruna, ST, Ghosh, S, Patil, KC 2001Int. J. Inorg. Mater.3387CrossRefGoogle Scholar
  4. 4.
    Souza, MAF, Candeia, RA, Lima, SJG, Cássia-Santos, MR, Santos, IMG, Longo, E, Souza, AG 2005J. Therm. Anal. Cal.79407CrossRefGoogle Scholar
  5. 5.
    Haines, PJ,  et al. 2002Principles of Thermal Analysis and Calorimetry, 1st Ed.Royal Society of ChemistryGreat BritainGoogle Scholar
  6. 6.
    Goncalves, RF, Carreno, NLV, Escote, MT, Lopes, KP, Valentini, A, Leite, ER, Longo, E, Machado, MA 2004Quím. Nova6862Google Scholar
  7. 7.
    Tsay, J, Fang, T 1999J. Am. Ceram. Soc.821409CrossRefGoogle Scholar
  8. 8.
    Souza, SC, Santos, IMG, Silva, MRS, Cassia-Santos, MR, Soledade, LEB, Souza, AG, Lima, SJG, Longo, E 2005J. Therm. Anal. Cal.79451CrossRefGoogle Scholar
  9. 9.
    Haijun, Z, Xiaolin, J, Yongjie, Y, Zhanjie, L, Daoyuan, Y, Zhenzhen, L 2004Mater. Res. Bull.39839CrossRefGoogle Scholar
  10. 10.
    Chetana, PR, Siddaramaiah, X, Ramappa, PG 2005Thermochim. Acta42513CrossRefGoogle Scholar
  11. 11.
    Regnier, N, Guibe, C 1997Polym. Degrad. Stab.55165CrossRefGoogle Scholar
  12. 12.
    Zarzycki, J 1982J. Non-Cryst. Solids48105CrossRefGoogle Scholar
  13. 13.
    Hernandez, T, Baustista, MC 2005J. Eur. Ceram. Soc.25663CrossRefGoogle Scholar
  14. 14.
    Skoog, DL, Leary, JJ,  et al. 1992Principles of Instrumental Analysis, 4th Ed.Saunders CollegeNew YorkGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • S. F. Santos
    • 1
  • M. C. de Andrade
    • 2
  • J. A. Sampaio
    • 3
  • A. B. da Luz
    • 3
  • T. Ogasawara
    • 1
  1. 1.Departamento de Eng. Metalúrgica e Materiais, COPPE/UFRJCidade UniversitáriaRio de JaneiroBrazil
  2. 2.Instituto PolitécnicoUERJ/IPRJNova FriburgoBrazil
  3. 3.Centro de Tecnologia Mineral, CETEMCidade UniversitáriaRio de JaneiroBrazil

Personalised recommendations