Journal of Thermal Analysis and Calorimetry

, Volume 86, Issue 3, pp 595–599 | Cite as

Hydration behavior of C2S and C2AS nanomaterials, synthetized by sol–gel method

  • M. Dovál
  • M. Palou
  • S. C. Mojumdar


Hydration behavior of dicalcium silicate (C2S) (Cement chemistry nomenclature is used where C=CaO, S=SiO2, A=Al2O3, \( \overline S \)S=SO3) and gehlenite (C2AS), synthesized by sol–gel method was investigated by means of isothermal heat flow calorimeter at different temperatures. These phases were obtained by crystallization processing at different temperatures from their xerogels (nano-crystalline) prepared by the sol–gel method at ambient temperature. The crystallization of C2S begins below 600°C and it is well crystallized at 900°C. X-ray diffraction patterns reveal that β-C2S is formed and it remains stable since after slow cooling. The crystallization of C2AS xerogels starts with the formation of C2S, then it reacts with alumina to form mineral C2AS at 1100°C. The effect of hydration temperature upon the hydration reaction of C2S obtained at 600 and 900°C and C2AS annealed at 600 and 1100°C was investigated by means of isothermal calorimeter. An increase in the temperature of hydration brought about initial acceleration of all samples, as indicated by the increased magnitude of peak of calorimetric curves. The microstructure of the samples cured at hydrothermal condition after 1 and 7 days has been examined by means of scanning electron microscopy (SEM). Fine crystals of calcium silicate hydrate (C–S–H) were developed in C2S samples, while C2AS has been hydrated to form gehlenite hydrate supplemented by C–S–H.


dicalcium silicate gehlenite hydration products hydration reactivity isothermal calorimeter temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. C. Hewlett, Lea’s Chemistry of cement and concrete, 4th Ed. St. Edmunsbury Press, 1998.Google Scholar
  2. 2.
    Ghosh, SN, Bhaskara Rao, P, Paul, AK, Raina, K 1979J. Mater. Sci.141554CrossRefGoogle Scholar
  3. 3.
    Janotka, I, Krajči, L’, Ray, A, Mojumdar, SC 2003Cem. Concr. Res.33489CrossRefGoogle Scholar
  4. 4.
    Janotka, I, Krajči, L’, Mojumdar, SC 2002Ceramics-Silikaty46110Google Scholar
  5. 5.
    Palou, MT, Majling, J 1997Ceramics-Silikaty41125Google Scholar
  6. 6.
    Mojumdar, SC 2005Res. J. Chem. Environ.923Google Scholar
  7. 7.
    Mojumdar, SC, Chowdhury, B, Varshney, KG, Mazanec, K 2004J. Therm. Anal. Cal.78135CrossRefGoogle Scholar
  8. 8.
    Mojumdar, SC 2001J. Therm. Anal. Cal.641133CrossRefGoogle Scholar
  9. 9.
    Mojumdar, SC, Drabik, M, Mazanec, K 2005J. Therm. Anal. Cal.83135CrossRefGoogle Scholar
  10. 10.
    Janotka, I, Krajči, L’ 1999Adv. Cem. Res.1135Google Scholar
  11. 11.
    Lai, G-C, Nojiri, T, Nakano, K-I 1992Cem. Concr. Res.22743CrossRefGoogle Scholar
  12. 12.
    Xiuji, F, Shizong, L 1986Cem. Concr. Res.16587CrossRefGoogle Scholar
  13. 13.
    Chromý, S 1970Zement-Kal-Gips23382Google Scholar
  14. 14.
    Smrčková, E, Palou, M, Tomková, V 1996J. Thermal Anal.46597CrossRefGoogle Scholar
  15. 15.
    Dovál, M, Palou, M, Kovár, V 2006Ceramics-Silikaty50220Google Scholar
  16. 16.
    El-Didamony, H, Khalil, KA, El-Atter, MS 2000Cem. Concr. Res.307CrossRefGoogle Scholar
  17. 17.
    Asbrige, AH, Page, CL, Page, MM 2002Cem. Concr. Res.321365CrossRefGoogle Scholar
  18. 18.
    Saika, NJ, Sengupta, P, Gogoi, PK, Borthaku, PC 2002Cem. Concr. Res.321717CrossRefGoogle Scholar
  19. 19.
    De Sylvia, PS, Glasser, FP 1993Cem. Concr. Res.23627CrossRefGoogle Scholar
  20. 20.
    Mojumdar, SC, Raki, L 2005J. Therm. Anal. Cal.821CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Ceramics, Glass and Cement, FCHPTSlovak University of Technology BratislavaBratislavaSlovak Republic
  2. 2.Institute for Research in ConstructionNational Research Council CanadaOttawaCanada

Personalised recommendations