Journal of Thermal Analysis and Calorimetry

, Volume 86, Issue 1, pp 17–21 | Cite as

Extension of the measuring range of balances

  • E. Robens
  • A. Dąbrowski


The basic principle of comparing the sample mass with the mass of a reference body in equilibrium gives the equal-armed beam balance a unique accuracy. Main parameters characterising the suitability of the instrument are measuring range, resolution and relative sensitivity (resolution/maximum load). The historical development of the values of these parameters achieved depended strongly on the practical need in those times.

Technically unfavourable scales of the oldest Egyptian dynasties (~3000 BC) could resolve mass differences of 1 g and had a relative sensitivity of at least 10–3. More sophisticated instruments from the 18th Dynasty (~1567–1320 BC) achieved a relative sensitivity of 10–4 independent of the size of the instrument. In 350 BC Aristotle clarified the theory of the lever and at about 250 BC Archimedes used the balance for density determinations of solids. The masterpiece of a hydrological balance was Al Chazini’s 'Balance of Wisdom’ built about 1120. Its relative sensitivity was 2⋅10–5.

Real progress took place when scientists like Lavoisier (1743–1794) founded modern chemistry. At the end of the 19th century metrological balances reached a relative sensitivity of 10–9 with a maximum load of several kilogrammes. That seems to be the high end of sensitivity of the classical mechanical beam balance with knife edges. Improvements took place by electrodynamic compensation (Emich, Gast).

In 1909 Ehrenhaft and Millikan could weigh particles of 10–15 g by means of electrostatic suspension. In 1957 Sauerbrey invented the oscillating quartz crystal balance. By observing the frequency shift of oscillating carbon nanotubes or of silica nanorods, masses or mass changes in the attogram or zeptogram have been observed recently.


balance history measuring range sensitivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jenemann, HR 1992Maß und Gewicht-Zeitschrift fürMetrologie21470Google Scholar
  2. 2.
    Jenemann, HR 1992Maß und Gewicht-Zeitschrift fürMetrologie22509Google Scholar
  3. 3.
    Kochsiek, M, Gläser, M,  et al. 2000Eds Comprehensive Mass MetrologyWiley-VCHBerlinGoogle Scholar
  4. 4.
    DIN/ISO, Internationales Wörterbuch der Metrologie, International Vocabulary of Basic and General Terms in Metrology Beuth, Berlin 1984.Google Scholar
  5. 5.
    Robens, E 1996J. Thermal Anal.47619CrossRefGoogle Scholar
  6. 6.
    Jenemann, HR,  et al. 2000The development of the determination of mass, in Comprehensive Mass MetrologyWiley-VCHBerlin119M. Kochsiek and M. Gläser, EdsGoogle Scholar
  7. 7.
    W. M. F. Petrie, A Season in Egypt, London 1888.Google Scholar
  8. 8.
    W.M. F. Petrie, Ancient Weights and Measures, London 1926.Google Scholar
  9. 9.
    Skinner, FG,  et al. 1967Weights and Measures – Their ancient origines and their development in Great Britain up to AD 1855Science MuseumLondonGoogle Scholar
  10. 10.
    James, TGH,  et al. 1979An Introduction to Ancient EgyptBritish MuseumLondonGoogle Scholar
  11. 11.
    Seeber, C,  et al. 1976Untersuchungen zur Darstellung des Totengerichts im Alten Ägypten. Münchner Ägyptologische StudienDeutscher KunstverlagMünchen Vol. 35Ed. H. W. MüllerGoogle Scholar
  12. 12.
    Naville, Papyrus Funéaires de la XXI Dynastie I, Paris 1912.Google Scholar
  13. 13.
    C. H. S. Davis, The Egyptian Book of Dead, New York 1984.Google Scholar
  14. 14.
    Robens, E, Massen, CH, Poulis, JA,  et al. 1995Untersuchungen an einem Modell für eine große Waage der XVIII. Ägyptischen Dynastie, in Ordo et MensuraScripta MercaturaeSt. Katharinen130D. Ahrens and R. C. A. Rottländer, EdsGoogle Scholar
  15. 15.
    Massen, CH, Poulis, JA, Robens, E, Geskes, H,  et al. 1994Investigation on a model for a large balance of the XVIII Egyptian dynasty, in Microbalance TechniquesMulti-Science PublishingBrentwood5J. U. Keller and E. Robens, EdsGoogle Scholar
  16. 16.
    Aristoteles, Ed. Questiones mechanicae. Kleine Schriften zur Physik und Metaphysik, Ed. P. Gohlke, Paderborn 1957.Google Scholar
  17. 17.
    Archimedes, ,  et al. 1987The Works of Archimedes, §7. About swimming bodiesWissenschaftliche VerlagsbuchhandlungFrankfurt am MainGoogle Scholar
  18. 18.
    Archimedes, The Works of Archimedes: Dover Publications.Google Scholar
  19. 19.
    Al-Chazini, Buch der Waage der Weisheit, Merw 1120.Google Scholar
  20. 20.
    T. Ibel, Die Wage im Altertum und Mittelalter, Erlangen 1908.Google Scholar
  21. 21.
    Bauerreiß, H,  et al. 1913Zur Geschichte des spezifischen Gewichts im Altertum und MittelalterUniversität ErlangenErlangenGoogle Scholar
  22. 22.
    L. da Vinci, Ed. Codex atlanticus-Saggio del Codice atlantico, Ed. Aretin, Vol. fol. 249 verso-a + fol. 8 verso-b, Milano 1872.Google Scholar
  23. 23.
    Jenemann, HR,  et al. 1996Das Kilogramm der Archive vom 4, Messidor des Jahres 7: Konform mit dem Gesetz vom 18, Germinal des Jahres 3? in Genauigkeit und PräzisionPhysikalisch-Technische BundesanstaltBraunschweig183D. Hoffmann and H. Witthöfft, EdsGoogle Scholar
  24. 24.
    Jenemann, HR 1988Beiträge zur deutschen Volks- und Altertumskunde91169Google Scholar
  25. 25.
    Hemminger, WF, Schönborn, K-H 1980Thermochim. Acta39321CrossRefGoogle Scholar
  26. 26.
    Eyraud, C, Rochas, P 1989Thermochim. Acta1521CrossRefGoogle Scholar
  27. 27.
    Gast, T, Brokate, T, Robens, E,  et al. 2000Vacuum Weighing, in Comprehensive Mass MetrologyWiley-VCHWeinheim296M. Kochsiek and M. Gläser, EdsGoogle Scholar
  28. 28.
    Czanderna, AW, Wolsky, SP,  et al. 1980Microweighing in Vacuuum and Controlled EnvironmentsElsevierAmsterdamGoogle Scholar
  29. 29.
    Jenemann, HR 1985Robert Hooke und die frühe Geschichte der Federwaage, Ber. Wissenschaftsgeschichte8121Google Scholar
  30. 30.
    Kilian, U, Weber, C,  et al. 2000Lexikon der Physik, Vol. 4Spektrum Akademischer VerlagHeidelbergGoogle Scholar
  31. 31.
    Böhme, G, Robens, E,  et al. 1973H. Straubel and G. WalterDetermination of relative weight changes of electrostatically suspended particles in the sub-microgram range, in Progress in Vacuum Micorbalance TechniquesHeydenm London169S. C. Bevan, S. J. Gregg and N. D. Parkyns, EdsGoogle Scholar
  32. 32.
    Einstein, A 1916Annalen der Physik49769Google Scholar
  33. 33.
    Sauerbrey, G 1957Phys. Verhandl.8193Google Scholar
  34. 34.
    Sauerbrey, G 1959Z. Physik155206CrossRefGoogle Scholar
  35. 35.
    V. M. Mecea, J. Therm. Anal. Cal., OnlineFirst, DOI: 10.1007/s10973-006-7570-x.Google Scholar
  36. 36.
    Gupta, S, Morell, G, Weiner, BR 2004J. Appl. Phys. Lett.8410CrossRefGoogle Scholar
  37. 37.
    Wood, J 2004Materials Today420Google Scholar
  38. 38.
    Poncheral, P, Wang, ZL, Ugarte, DI, de Heer, WA 1999Science2831513CrossRefGoogle Scholar
  39. 39.
    Ilic, B, Craighead, HG, Krylov, S, Senaratne, W, Ober, C, Neuzil, P 2004J. Appl. Phys.953694CrossRefGoogle Scholar
  40. 40.
    Berger, R, Gutmann, J 2005Nanopticum14Google Scholar
  41. 41.
    Postma, HWCh, Kozinsky, I, Husain, A, Roukes, ML 2005Appl. Phys. Lett.86223105CrossRefGoogle Scholar
  42. 42.
    Sealy, C 2004Materials Today69Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-UniversitätMainzGermany
  2. 2.Wydziału ChemiiUniwersytet Marii Curie-SkłodowskiejLublinPoland

Personalised recommendations