Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 89, Issue 1, pp 261–265 | Cite as

Syntheses and spectrothermal studies of triethanolamine complexes of Co(II), Ni(II), Cu(II) and Cd(II) squarates

  • O. Z. Yeşilel
  • H. Ölmez
Regular Papers Complexes

Abstract

The triethanolamine complexes, [M(tea)2]sq·nH2O, (n=2 for Co(II), n=0 for Ni(II), Cu(II) and n=1 for Cd(II), tea=triethanolamine, sq2−=squarate), have been synthesized and characterized by elemental analyses, magnetic susceptibility and conductivity measurements, UV-Vis and IR spectra, and thermal analyses techniques (TG, DTG and DTA). The Co(II), Ni(II) and Cu(II) complexes possess octahedral geometry, while the Cd(II) complex is monocapped trigonal prismatic geometry. Dianionic squarate behaves as a counter ion in the complexes. The thermal decomposition of these complexes takes place in three stages: (i) dehydration, (ii) release of the tea ligands and (iii) burning of organic residue. On the basis of the first DTGmax of the decomposition, the thermal stability of the anhydrous complexes follows the order: Ni(II), 289°C>Co(II), 230°C>Cu(II), 226°C>Cu(II), 170°C in static air atmosphere. The final decomposition products — the respective metal oxides — were identified by FTIR spectroscopy.

Keywords

squaric acid thermal decomposition triethanolamine complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Cohen, J. R. Lacher and J. D. Park, J. Am. Chem. Soc., 81 (1959) 3480.CrossRefGoogle Scholar
  2. 2.
    H. P. Tedosco and H. F. Walton, Inorg. Chem., 8 (1969) 932.CrossRefGoogle Scholar
  3. 3.
    I. Castro, J. Faus and M. Julve, Trans. Met. Chem., 13 (1988) 455.CrossRefGoogle Scholar
  4. 4.
    I. Castro, J. Faus, M. Julve, Y. Journaux and J. Sletten, J. Chem. Soc., Dalton Trans., (1991) 2533.Google Scholar
  5. 5.
    A. Weiss, E. Riegler, I. Alt, H. Böhme and C. Robl, Z. Naturforsch., B: Chem. Sci., 41 (1986) 18.Google Scholar
  6. 6.
    B. D. Alleyne, L. A. Hall, H. A. Hosein, H. Jaggernauth, A. J. P. White and D. J. Williams, J. Chem. Soc., Dalton Trans., (1998) 3845.Google Scholar
  7. 7.
    G. M. Frankenbach, M. A. Beno, A. M. Kini, J. M. Williams, U. Welp, J. E. Thompson and M. H. Whangbo, Inorg. Chim. Acta, 192 (1992) 195.CrossRefGoogle Scholar
  8. 8.
    C. Robl and A. Weiss, Z. Naturforsch., B: Chem. Sci., 41 (1986) 1341.Google Scholar
  9. 9.
    A. Weiss, E. Riegler and C. Robl, Z. Naturforsch., B: Chem. Sci., 41 (1986) 1329.Google Scholar
  10. 10.
    A. Weiss, E. Riegler and C. Robl, Z. Naturforsch., B: Chem. Sci., 41 (1986) 1333.Google Scholar
  11. 11.
    R. West and H. Y. Niu, J. Chem. Soc., 85 (1963) 2589.CrossRefGoogle Scholar
  12. 12.
    R. Kirchmaier, E. Altin and A. Lentz, Z. Kristallogr. NCS, 218 (2003) 1.CrossRefGoogle Scholar
  13. 13.
    G. Bernardinelli, D. Deguenon, R. Soules and P. Castan, Can. J. Chem., 67 (1998) 1158.CrossRefGoogle Scholar
  14. 14.
    R. Soules, F. Dahan, J. P. Laurent and P. Castan, J. Chem. Soc., Dalton Trans., (1998) 587.Google Scholar
  15. 15.
    J. M. Reinprecht, J. M. Miller, G. C. Vogel, M. S. Haddad and D. N. Hendrickson, Inorg. Chem., 19 (1980) 927.CrossRefGoogle Scholar
  16. 16.
    X. Solons, M. Aguilõ, A. Gleizes, J. Faus, M. Julve and M. Verdaguer, Inorg. Chem., 29 (1990) 775.CrossRefGoogle Scholar
  17. 17.
    I. Catro, M. L. Calatayud, J. Sletten, F. Lloret and M. Julve, Inorg. Chim. Acta, 287 (1999) 173.CrossRefGoogle Scholar
  18. 18.
    A. Bulut, I. Ucar, O. Z. Yeşilel, H. Icbudak, H. Ölmez and O. Büyükgüngör, Acta Cryst., C60 (2004) m526.Google Scholar
  19. 19.
    I. Ucar, O. Z. Yeşilel, A. Bulut, H. Ölmez and O. Büyükgüngör, Acta Cryst., E61 (2005) m947.Google Scholar
  20. 20.
    O. Z. Yeşilel, A. Bulut, I. Ucar, H. Icbudak, H. Ölmez and O. Büyükgüngör, Acta Cryst., E60 (2004) m228.Google Scholar
  21. 21.
    I. Ucar, O. Z. Yeşilel, A. Bulut, H. Icbudak, H. Ölmez and C. Kazak, Acta Cryst., C60 (2004) m392.Google Scholar
  22. 22.
    I. Ucar, O. Z. Yeşilel, A. Bulut, H. Icbudak, H. Ölmez and C. Kazak, Acta Cryst., E60 (2004) m322.Google Scholar
  23. 23.
    I. Ucar, O. Z. Yeşilel, A. Bulut, H. Ölmez and O. Büyükgüngör, Acta Cryst., E60 (2004) m1025.Google Scholar
  24. 24.
    I. Ucar, A. Bulut and O. Büyükgüngör, Acta Cryst., C61 (2005) m218.Google Scholar
  25. 25.
    I. Catro, M. L. Calatayud, J. Sletten, F. Lloret and M. Julve, J. Chem. Soc., Dalton Trans., (1997) 811.Google Scholar
  26. 26.
    I. Catro, M. L. Calatayud, J. Sletten, F. Lloret and M. Julve, Inorg. Chim. Acta, 287 (1999) 173.CrossRefGoogle Scholar
  27. 27.
    C. E. Xanthopoulos, M. P. Sigalas, G. A. Katsoulos, C. A. Tsipis, C. C. Hadjikostas, A. Terzis and M. Mentzafos, Inorg. Chem., 32 (1993) 3743.CrossRefGoogle Scholar
  28. 28.
    A. Crispini, D. Pucci, I. Aiello and M. Ghedini, Inorg. Chim. Acta, 304 (2000) 219.CrossRefGoogle Scholar
  29. 29.
    I. Castro, M. L. Calatayud, J. Sletten, M. Julve and F. Lloret, C. R. Acad. Sci. Paris, Chimie/Chemistry, 4 (2001) 235.Google Scholar
  30. 30.
    A. Mondal, D. Das and N. R. Chaudhuri, J. Therm. Anal. Cal., 55 (1999) 165.CrossRefGoogle Scholar
  31. 31.
    T. K. Maji, D. Das and N. R. Chaudhuri, J. Therm. Anal. Cal., 63 (2001) 617.CrossRefGoogle Scholar
  32. 32.
    D. Das, A. Ghosh and N. R. Chaudhuri, Bull. Chem. Soc., Jpn., 70 (1997) 789.CrossRefGoogle Scholar
  33. 33.
    T. K. Maji, D. Das and N. R. Chaudhuri, J. Therm. Anal. Cal., 68 (2002) 319.CrossRefGoogle Scholar
  34. 34.
    O. Z. Yeşilel, H. Ölmez and S. Soylu, Trans. Met. Chem., 31 (2006) 396.CrossRefGoogle Scholar
  35. 35.
    B. Sen and R. L. Dotson, J. Inorg. Nucl. Chem., 32 (1970) 2707.CrossRefGoogle Scholar
  36. 36.
    H. Içbudak, V. Y. Yılmaz and H. Ölmez, J. Thermal Anal., 44 (1995) 605.CrossRefGoogle Scholar
  37. 37.
    I. Ucar, O. Z. Yeşilel, A. Bulut, H. Icbudak, H. Ölmez and C. Kazak, Acta Cryst., E60 (2004) m322.Google Scholar
  38. 38.
    B. Chiswell, E. D. McKenzie and L. F. Lindoy, Comprehensive Coordination Chemistry, Vol. 4, Ed. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon Press, Oxford 1997, pp. 1–122.Google Scholar
  39. 39.
    İ. Ucar, O. Z. Yeşilel, A. Bulut, H. Icbudak, H. Ölmez and C. Kazak, Acta Cryst., C60 (2004) m392.Google Scholar
  40. 40.
    H. Ölmez, H. Icbudak, O. Z. Yeşilel, C. Arıcı and D. Ülkü, Z. Kristallogr., 219 (2004) 300.CrossRefGoogle Scholar
  41. 41.
    V. T. Yılmaz, Y. Topcu and A. Karadag, Thermochim. Acta, 383 (2002) 129.CrossRefGoogle Scholar
  42. 42.
    R. A. Bailey, W. N. Mills and W. J. Tangredi, J. Inorg. Nucl. Chem., 33 (1971) 2387.CrossRefGoogle Scholar
  43. 43.
    D. Sutton, Electronic Spectra of Transition Metal Complexes, McGraw-Hill, London 1968, p. 208.Google Scholar
  44. 44.
    T. Premkumar and S. Govindarajan, J. Therm. Anal. Cal., 84 (2006) 395.CrossRefGoogle Scholar
  45. 45.
    F. G. Baglin and C. B. Rose, Spectrochim. Acta, Part A, 26 (1970) 2293.CrossRefGoogle Scholar
  46. 46.
    A. Ubaldini, C. Artini, G. A. Costa, M. M. Carnasciali and R. Masini, J. Therm. Anal. Cal., 84 (2006) 207.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  1. 1.Department of ChemistryFaculty of Arts and Sciences Eskişehir Osmangazi UniversityEskişehirTurkey
  2. 2.Department of ChemistryFaculty of Arts and Sciences Ondokuz Mayıs UniversityKurupelit-SamsunTurkey

Personalised recommendations