Journal of Thermal Analysis and Calorimetry

, Volume 85, Issue 3, pp 785–789 | Cite as

Thermokinetic analysis of the hydration process of calcium phosphate cement



A microcalorimeter (Setaram c-80) was used to study the thermokinetics of the hydration process of calcium phosphate cement (CPC), a biocompatible biomaterial used in bone repair. The hydration enthalpy was determined to be 35.8 J g–1 at 37.0°C when up to 80 mg CPC was dissolved in 2 mL of citric buffer. In the present study, parameters related to time constants of the calorimeter were obtained by fitting the recorded thermal curves with the function θ=Ae–?t(1– e–?2t). The real thermogenetic curves were then retrieved with Tian function and the transformation rate of the hydration process of CPC was found to follow the equation α=1–[1–(0.0075t)3]3. The microstructures of the hydrated CPC were examined by scanning electron microscopy. The nano-scale flake microstructures are due to crystallization of calcium phosphate and they could contribute to the good biocompatibility and high bioactivity.


calcium phosphate cement hydration process rebuilding thermogenetic curve thermokinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kveton, JF, Friedman, CD, Piepmeier, JM, Constantino, PD 1995Laryngoscope105156Google Scholar
  2. 2.
    Chow, LC, Takagi, S, Ishikawa, K 1994Formation of hydroxyapatite in cement systems.CRC PressUSA127In: W. E. Brown, E. Constanz, EditorsGoogle Scholar
  3. 3.
    Ginebra, M, Fernandez, E, DeMaeyer, ME, Verbeeck, R, Boltong, M, Ginebra, J, Driessens, F, Planell, J 1997J. Dent. Res.76905CrossRefGoogle Scholar
  4. 4.
    Hemminger, W, Höhne, G 1984Calorimetry-Fundamentals and PracticeWeinheim, Deerfield BeachBaselGoogle Scholar
  5. 5.
    Chen, L, Yu, ZW, Quinn, PJ 2001Biophys. Chem.89231CrossRefGoogle Scholar
  6. 6.
    Chen, L, Yu, ZW 2002J. Macromol. Sci.-Phys.41137CrossRefGoogle Scholar
  7. 7.
    Wadsö, I 2001J. Therm. Anal. Cal.6475CrossRefGoogle Scholar
  8. 8.
    Vyazovkin, S 2002Anal. Chem.742749CrossRefGoogle Scholar
  9. 9.
    Pacewska, B, Wilińska, I, Bukowska, M 2000J. Therm. Anal. Cal.6071CrossRefGoogle Scholar
  10. 10.
    Nocuń-Wczelik, W 2001J. Therm. Anal. Cal.65613CrossRefGoogle Scholar
  11. 11.
    Roszczynialski, W 2002J. Therm. Anal. Cal.70387CrossRefGoogle Scholar
  12. 12.
    Usherov-Marschak, A, Zlatkovski, O, Sopov, V 2002J. Therm. Anal. Cal.68223CrossRefGoogle Scholar
  13. 13.
    Nocuń-Wczelik, Wiesława, Pytel, Z 2004J. Therm. Anal.Cal.771388Google Scholar
  14. 14.
    Zeng, XC, Zhang, YQ, Meng, XG, Chen, MZ, Qin, ZM, Hu, QS 1996Chem. J. Chin. Univ.17607Google Scholar
  15. 15.
    Kirchner, R, Seidel, J, Wolf, G 1998Thermochim. Acta31019CrossRefGoogle Scholar
  16. 16.
    Calvet, E, Prat, H, Skinner, HA 1963Recent Progress in Microcalorimetry, Pergamon PressLondonGoogle Scholar
  17. 17.
    Bares, P, Wu, ZQ, Wang, RF 1991Structure and Function of CementArchitecture PressChina252Google Scholar
  18. 18.
    Chowdhury, B, Mojumdar, SC 2005J. Therm. Anal. Cal.81179CrossRefGoogle Scholar
  19. 19.
    Li, CD, Mason, J 2004J. Therm. Anal. Cal.1585Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Key Lab of Bioorganic Phosphorus Chemistry and Chemical BiologyMinistry of Education, Department of Chemistry, Tsinghua UniversityBeijingP. R. China
  2. 2.The Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingP. R. China

Personalised recommendations