Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 85, Issue 1, pp 195–202 | Cite as

Up-scaling of dsc data of high energetic materials

Simulation of cook-off experiments
  • Roduit B. 
  • Borgeat Ch. 
  • Berger B. 
  • Folly P. 
  • Andres H. 
  • Schädeli U. 
  • Vogelsanger B. 
Article

Abstract

Differential scanning calorimetry (DSC) carried out with few heating rates was applied in the studies of the thermal properties of four energetic materials: EI ® propellant, high explosive PBXW-17, pyrotechnic mixtures with composition B/KNO3 (50:50) and B/KNO3 (30:70). DSC signals, after optimization of the baseline, were used for the calculation of the kinetic parameters (KP) of the decomposition process applying advanced kinetic software designed by AKTS. The determination of the kinetic parameters was based on the differential iso-conversional method of Friedman. The correctness of the estimation of KP was checked by the comparison of the experimental and predicted courses of the decomposition.

The slow cook-off experiments of above mentioned energetic materials were carried out with a heating rate of 3.3°C h–1. For the simulation of the experimental results, the heat balance based on the finite element analysis (FEA) was applied together with the advanced kinetic description of the reaction. The comparison of the experimental and simulated data indicates that applied procedure resulted in a very good prediction of the temperature of the ignition. Application of commonly used, simplified assumptions concerning the mechanism of the decomposition (such as 1st or n th order mechanisms) led to significantly worse prediction of the cook-off temperatures.

Keywords

adiabatic runaway cook-off ignition kinetics safety thermal ageing thermal hazards TMRad 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bunyan, PF, Griffiths, TT, Norris, VJ 2003Thermochim. Acta40117CrossRefGoogle Scholar
  2. 2.
    Singh, G, Pandey, DK 2004J. Therm. Anal. Cal.76507CrossRefGoogle Scholar
  3. 3.
    B. Roduit, C. Borgeat, U. Ticmanis, M. Kaiser, P. Guillaume, B. Berger and P. Folly, 35th International Annual Conference of ICT July, 2004, p. 37.Google Scholar
  4. 4.
    U. Ticmanis, G. Pantel, S. Wilker and M. Kaiser, 32nd International Annual Conference of ICT July, 2001, p. 135.Google Scholar
  5. 5.
    Roduit, B, Borgeat, Ch, Berger, B, Folly, P, Alonso, B, Aebischer, JN 2005J. Therm. Anal. Cal.8091CrossRefGoogle Scholar
  6. 6.
    Roduit, B, Borgeat, Ch, Berger, B, Folly, P, Alonso, B, Aebischer, JN, Stoessel, F 2005J. Therm. Anal. Cal.80229CrossRefGoogle Scholar
  7. 7.
    Brown, ME, Maciejewski, M, Vyazovkin, S, Nomen, R, Sempere, J, Burnham, A, Opfermann, J, Strey, R, Anderson, HL, Kemmler, A, Keuleers, R, Janssens, J, Desseyn, HO, Li, C-R, Tang, TB, Roduit, B, Malek, J, Mitsuhashi, T 2000Thermochim. Acta355125CrossRefGoogle Scholar
  8. 8.
    Maciejewski, M 2000Thermochim. Acta355145CrossRefGoogle Scholar
  9. 9.
    Burnham, AK 2000Thermochim. Acta355165CrossRefGoogle Scholar
  10. 10.
    Roduit, B 2000Thermochim. Acta355171CrossRefGoogle Scholar
  11. 11.
    Friedman, HL 1965J. Polym. Sci. Part C6183Google Scholar
  12. 12.
    Advanced Kinetics and Technology Solutions: http://www.akts.com (AKTS-Thermokinetics software and AKTS-Thermal Safety software).Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Roduit B. 
    • 1
  • Borgeat Ch. 
    • 1
  • Berger B. 
    • 2
  • Folly P. 
    • 2
  • Andres H. 
    • 3
  • Schädeli U. 
    • 3
  • Vogelsanger B. 
    • 3
  1. 1.Advanced Kinetics and Technology Solutions AKTS AGSidersSwitzerland
  2. 2.armasuisse, Science and Technology CentreThunSwitzerland
  3. 3.Nitrochemie Wimmis AGWimmisSwitzerland

Personalised recommendations