Novel polymer blends based on poly(ether-urethane) ionomer and ion-containing styrene copolymer

  • Slisenko O. 
  • Lebedev E. 
  • Pissis P.  
  • Spanoudaki A. 
  • Kontou E. 
  • Grigoryeva O. 
Article

Abstract

The structure-property relationships of thermoplastic polymer blends based on poly(ether-urethane) ionomer (PEUI) and ion-containing styrene-acrylic acid copolymer (S-co-AA(K)) have been investigated by using DMTA, DSC and TGA, as well as tensile tests. Convergence of the glass transition temperature (Tg) values of the PEUI and the S-co-AA(K) components in the blends studied, as compared to the individual polymers, was found and explained by improving compatibility of the components due to increasing effective density of physical networks formed by ion-dipole and ion-ion interactions of ionic groups of the components. Character of E'=f(T) and E''=f(T) dependencies confirms the increase of the effective density of physical networks in the compositions studied compared to individual PEUI and S-co-AA(K). Improvement of end-use properties, i.e. thermal stability and tensile properties has been found for the PEUI/S-co-AA(K) compositions with lower content of S-co-AA(K) (i.e. <10 mass%) and explained by formation of additional network of intermolecular ionic bonds between the functional groups of PEUI and S-co-AA(K).

Keywords

compatibility phase structure poly(ether-urethane) ionomer styrene-acrylic acid copolymer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vasile, C, Kulshreshtha, AK,  et al. 2003Handbook of Polymer Blends and Composites, Vol. 3ARapra Technology Lim.United Kingdom330Google Scholar
  2. 2.
    Paul, DR, Bucknall, CB,  et al. 2000Polymer Blends, Vol. 1WileyNew York600Google Scholar
  3. 3.
    Daniliuc, L, David, C 1996Polymer375219CrossRefGoogle Scholar
  4. 4.
    He, Y, Zhu, B, Inoue, Y 2004Prog. Polym. Sci.291021CrossRefGoogle Scholar
  5. 5.
    Eastwood, E, Viswanathan, S, O’Brien, CP, Kumar, D, Dadmun, MD 2005Polymer463957CrossRefGoogle Scholar
  6. 6.
    Lattimer, RP, Williams, RC 2002J. Anal. Appl. Pyrolysis6385Google Scholar
  7. 7.
    Herrera, M, Matuschek, G, Kettrup, A 2002Polym. Degr. Stab.78323CrossRefGoogle Scholar
  8. 8.
    Kim, S-S, Kim, S 2004Chem. Eng. J.9853Google Scholar
  9. 9.
    Faravelli, T, Pinciroli, M, Pisano, F, Bozzano, G, Dente, M, Ranzi, E 2001J. Anal. Appl. Pyrolysis60103Google Scholar
  10. 10.
    McNeill, C, Liggat, JJ 1992Polym. Degrad. Stab.36291Google Scholar
  11. 11.
    Yang, W, Shen, J, Zhu, S-H, Chan, C-M 1998J. Appl. Polym. Sci.672035Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Slisenko O. 
    • 1
  • Lebedev E. 
    • 1
  • Pissis P.  
    • 2
  • Spanoudaki A. 
    • 2
  • Kontou E. 
    • 3
  • Grigoryeva O. 
    • 1
  1. 1.Institute of Macromolecular ChemistryNational Academy of Sciences of UkraineKievUkraine
  2. 2.Department of PhysicsNational Technical University of AthensAthensGreece
  3. 3.Department of MechanicsNational Technical University of AthensAthensGreece

Personalised recommendations