Journal of Thermal Analysis and Calorimetry

, Volume 87, Issue 2, pp 453–456 | Cite as

Interaction of a homologous series of n-alkyl trimethyl ammonium bromides with eggwhite lysozyme

Microcalorimetric and spectroscopic study
  • A. K. Bordbar
  • R. Hosseinzadeh
  • M. H. Norozi


The interaction of a series of n-alkyl trimethyl ammonium bromides (C12, C14 and C16) with egg white lysozyme have been studied using fluorescence and UV-Vis spectroscopies and isothermal titration calorimetry (ITC). The trend of variation of molar absorptivity at 281 nm, quantum yields (λex=281 nm) and heat of interaction with respect to surfactant concentration, were measured. The spectrophotometric results show that the hydrophobic interactions have a major role in denaturation mechanism and it would be increased with increasing in hydrocarbon tail length of surfactant. The ITC results indicated the two-step mechanism for unfolding of lysozyme due to its interaction with surfactants.


absorption spectroscopy cationic surfactants fluorescence spectroscopy ITC lysozyme unfolding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chodankar, S, Aswal, VK 2005Phys. Rev. E72041931CrossRefGoogle Scholar
  2. 2.
    Manetto, GD, La Rosa, C, Grasso, DM, Milardi, D 2005J. Therm. Anal. Cal.80263CrossRefGoogle Scholar
  3. 3.
    Michnik, A, Michalik, K, Drzazga, Z 2005J. Therm. Anal. Cal.80399CrossRefGoogle Scholar
  4. 4.
    Pace, CN 1990Trends Biotechnol.893CrossRefGoogle Scholar
  5. 5.
    Vieille, C, Zeikus, JG 1996Trends Biotechnol.14183CrossRefGoogle Scholar
  6. 6.
    M. N. Jones and P. Manley, Surfactants Solution, Proc. Int. Symp., 4th (1984), Meeting Date 1982, pp. 2, 1403.Google Scholar
  7. 7.
    Imoto, T, Sami, S, Tsuru, M, Yagishita, K 1979Agric. Biol. Chem.431809CrossRefGoogle Scholar
  8. 8.
    Hayashi, K, Kugimiya, M, Imoto, T, Funatsu, M, Bigelow, CC 1968Biochemistry71461CrossRefGoogle Scholar
  9. 9.
    Hayashi, K, Kugimiya, M, Imoto, T, Funatsu, M, Bigelow, CC 1968Biochemistry71467CrossRefGoogle Scholar
  10. 10.
    Subramanian, M, Sheshadri, BS, Venkatappa, MP 1984J. Biochem.95413Google Scholar
  11. 11.
    Saboury, AA 2003J. Therm. Anal. Cal.7293CrossRefGoogle Scholar
  12. 12.
    Waters, LJ, Leharna, SA, Mitchell, JC 2005J. Therm. Anal. Cal.8043CrossRefGoogle Scholar
  13. 13.
    de Rivera, MR, Socorro, F 2005J. Therm. Anal. Cal.80769CrossRefGoogle Scholar
  14. 14.
    Sophianopoulos, AJ, Khodes, CK, Holcomb, DN, Holde, KE 1962J. Biol. Chem.2371107Google Scholar
  15. 15.
    Kresheck, GC, Hargraves, WA 1974J. Colloid Interface Sci.48481CrossRefGoogle Scholar
  16. 16.
    Kresheck, GC 1998J. Phys. Chem. B1026596CrossRefGoogle Scholar
  17. 17.
    Olofsson, G 1985J. Phys. Chem.891473CrossRefGoogle Scholar
  18. 18.
    Johnson, I, Olofsson, G, Jonsson, B 1987J. Chem. Soc. Faraday Trans.1833331Google Scholar
  19. 19.
    Paula, S, Sus, W, Tuchtenhagen, J, Blume, A 1995J. Phys. Chem.9911742CrossRefGoogle Scholar
  20. 20.
    Rosen, MJ,  et al. 1989‘Surfactants and Interfacial Phenomena’Surfactant Research InstituteBrooklyn CollegeChapter 3 p. 122Google Scholar
  21. 21.
    Saboury, AA, Bordbar, AK, Moosavi-Movahedi, AA 1996J. Chem. Thermodyn.281077CrossRefGoogle Scholar
  22. 22.
    Saboury, AA, Moosavi-Movahedi, AA 1996Bull. Chem. Soc. Jpn.693031CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • A. K. Bordbar
    • 1
  • R. Hosseinzadeh
    • 1
    • 2
  • M. H. Norozi
    • 1
  1. 1.Laboratory of Biophysical Chemistry, Department of ChemistryUniversity of IsfahanIsfahanIran
  2. 2.Food and Chemical Analysis Research Laboratory, Jahad-E-DaneshgahiUrmia UniversityUrmiaIran

Personalised recommendations