Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 78, Issue 3, pp 933–940 | Cite as

New hydrazinium lanthanide sulphite hydrates

Preparation, spectral and thermal properties
  • J. R. Sharmila
  • B. N. Sivasankar
Article

Abstract

Some new hydrazinium lanthanide sulphite hydrates of the formula N2H5Ln(SO3)2(H2O)2 where Ln=La, Pr, Nd and Sm and N2H5Ce(SO3)2 have been prepared and characterized by chemical analyses, magnetic studies and electronic and infrared spectroscopy. Thermal degradation of these complexes has been investigated by simultaneous TG-DTA techniques. These complexes decompose in air after dehydration to give the respective lanthanide sulphate as the final residue. However, cerium complex gives a mixture of cerium sulphate and ceric oxide as the end products. Cerium and neodymium complexes have also been subjected to thermal degradation in nitrogen atmosphere and the dehydration of neodymium complex was observed at a higher temperature than in air. The anhydrous neodymium and cerium complexes decompose in one step to give the respective sulphate in nitrogen atmosphere.

Keywords

hydrazinium metal sulphites metal oxides metal sulphates TG-DTA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Braibanti, F. Dallavalle, M. A. Pellinghelli and E. Leporati, Inorg. Chem., 7 (1968) 1430.Google Scholar
  2. 2.
    K. C. Patil, S. Govindarajan and H. Manohar, Synth. React. Inorg. Met.-Org. Chem., 11 (1981) 245.Google Scholar
  3. 3.
    K. C. Patil, S. Govindarajan, R. Soundararajan and V. R. Pai Verneker, Proc. Indian Acad. Sci., (Chem. Sci.), 90 (1981) 421.Google Scholar
  4. 4.
    S. Govindarajan and K. C. Patil, Thermochim. Acta., 55 (1982) 373.Google Scholar
  5. 5.
    S. Govindarajan, K. C. Patil and H. Manohar, J. Chem. Soc. Dalton Trans., (1986) 119.Google Scholar
  6. 6.
    N. Buckovec, Thermochim. Acta, 88 (1985) 391.Google Scholar
  7. 7.
    S. Yasodhai and S. Govindarajan, J. Therm. Anal. Cal., 67 (2002) 679.CrossRefGoogle Scholar
  8. 8.
    O. Gencova and J. Siftar, J. Therm. Anal. Cal., 57 (1999) 591.Google Scholar
  9. 9.
    B. N. Sivasankar and S. Govindarajan, Synth. React. Inorg. Met.-Org. Chem., 25 (1995) 31.Google Scholar
  10. 10.
    B. N. Sivasankar and S. Govindarajan, J. Thermal Anal., 46 (1996) 117.Google Scholar
  11. 11.
    B. N. Sivasankar and S. Govindarajan, J. Thermal Anal., 48 (1997) 1401.Google Scholar
  12. 12.
    V. M. Georing and H. Kaspar, Z. Anorg. Allg. Chem., 278 (1955) 255.Google Scholar
  13. 13.
    B. N. Sivasankar and S. Govindarajan, Synth. React. Inorg. Met.-Org. Chem., 24 (1994) 1583.Google Scholar
  14. 14.
    B. N. Sivasankar and L. Ragunath, Thermochim. Acta, 153 (1989) 419.Google Scholar
  15. 15.
    K. C. Patil, R. Soundararajan and E. P. Goldberg, Synth. React. Inorg. Met.-Org. Chem., 13 (1983) 29.Google Scholar
  16. 16.
    P. Ravindranathan and K. C. Patil, Proc. Indian Acad. Sci. Chem. Sci., 95 (1985) 345.Google Scholar
  17. 17.
    J. S. Budkuley and K. C. Patil, Thermochim. Acta, 153 (1989) 419.Google Scholar
  18. 18.
    J. S. Budkuley , Ph. D., Thesis, Indian Institute of Science, Bangalore 1987.Google Scholar
  19. 19.
    P. Ray and B. K. Goswami, Z. Anorg. Allg. Chem., 168 (1928) 329.Google Scholar
  20. 20.
    B. N. Sivasankar and J. R. Sharmila, J. Therm. Anal. Cal., 73 (2003) 271.Google Scholar
  21. 21.
    A. I. Vogel, A Textbook of Quantitative Inorganic Analysis, 4th Edn., Longman, London 1978.Google Scholar
  22. 22.
    K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York 1963.Google Scholar

Copyright information

© Akadémiai Kiadó 2004

Authors and Affiliations

  1. 1.Department of Chemistry, Government Arts College, Ooty, The NilgirisTamil NaduIndia

Personalised recommendations