Journal of Thermal Analysis and Calorimetry

, Volume 78, Issue 3, pp 699–705 | Cite as

Effect of alumina concentration on thermal and structural properties of mas glass and glass-ceramics

  • M. Goswami
  • A. Sarkar
  • B I. Sharma
  • V. K. Shrikhande
  • G. P. Kothiyal


Magnesium aluminum silicate (MAS) glass samples with different concentrations of alumina (7.58 to 14.71 mol%) were prepared by melt and quench-technique. Total Mg content in the form of MgF2+MgO was kept constant at 25 mol%. MAS glass was converted into glass-ceramics by controlled heat treatment at around 950°C. Crystalline phases present in different samples were identified by powder X-ray diffraction technique. Dilatometry technique was used to measure the thermal expansion coefficient and glass transition temperature. Scanning electron microscopy (SEM) was employed to study the microstructure of the glass-ceramic sample. It is seen from X-ray diffraction studies that at low Al2O3 concentrations (up to 10.5 mol%) both MgSiO3 and fluorophlogopite phases are present and at higher Al2O3 concentrations of 12.3 and 14.7 mol%, fluorophlogopite and magnesium silicate (Mg2SiO4), respectively are found as major crystalline phases. The average thermal expansion co-efficient (αavg) of the glass samples decreases systematically from 9.8 to 5.5·10−6 °C−1 and the glass transition temperature (Tg) increases from 610.1 to 675°C with increase in alumina content. However, in glass-ceramic samples the αavg varies in somewhat complex manner from 6.8 to 7.9·10−6 °C−1 with variation of Al2O3 content. This was thought to be due to the presence of different crystalline phases, their relative concentration and microstructure.


glass-ceramics glass transition temperature magnesium aluminum silicate thermal expansion coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. G. Grossman, J. Am. Ceram. Soc., 55 (1972) 446.Google Scholar
  2. 2.
    D. S. Baik, K. S. No and J. S. Chun, J. Am. Ceram. Soc., 78 (1995) 1217.Google Scholar
  3. 3.
    A. Costantini, F. Arcobello Varlese, A. Buri and F. Branda, J. Thermal Anal., 53 (1998) 975.Google Scholar
  4. 4.
    M. Schweiger, P. Groning, L. Schlapbach and W. Holand, J. Therm. Anal. Cal., 60 (2000) 1009.Google Scholar
  5. 5.
    M. Kodama, S. Feller and M. Affatigato, J. Therm. Anal. Cal., 57 (1999) 787.Google Scholar
  6. 6.
    Lj. Radonjic and Lj. Nikolic, J. Eur. Ceram. Soc., 7 (1991) 11.Google Scholar
  7. 7.
    P. Pacurariu, D. Lita, R. I. Lazau, G. Kovacs and I. Lazau, J. Therm. Anal. Cal., 72 (2003) 823.Google Scholar
  8. 8.
    M. A. Bin Hussain, M. H. Idrees and M. M. Khan, J. Therm. Anal. Cal., 67 (2002) 563.Google Scholar
  9. 9.
    A.W. A. El Shennawi, A. A Omar and A. R. El-Ghannam, Ceram. Int., 17 (1991) 25.Google Scholar
  10. 10.
    M. Goswami, A. Sarkar, T. Mirza, V. K. Shrikhande, Sangeeta, K. R. Gurumurthy and G. P. Kothiyal, Ceram. Int., 28 (2002) 585.Google Scholar
  11. 11.
    J. Henry and R. G. Hill, J. Non-Cryst. Solids, 319 (2003) 1.Google Scholar
  12. 12.
    J. Henry and R. G. Hill, J. Non-Cryst. Solids, 319 (2003) 13.Google Scholar
  13. 13.
    M. Goswami, T. Mirza, A. Sarkar, S. Manikandan, Sangeeta, S. L. Verma, K. R. Gurumurthy, V. K. Shrikhande and G. P. Kothiyal, Bull. Mater. Sci., 23 (2000) 377.Google Scholar
  14. 14.
    M. Goswami, V. Sudarsan, G. P. Kothiyal and S. K. Kulshreshtha, communicated to J. Eur. Ceram. Soc., (2004)Google Scholar
  15. 15.
    R. W. Cahn, P. Haasen and E. J. Kramer, (Eds), Structure and properties of ceramics, (Vol. Editor M. Swain) in Materials Sci. Technol., 11 (1994) 69.Google Scholar

Copyright information

© Akadémiai Kiadó 2004

Authors and Affiliations

  • M. Goswami
    • 2
  • A. Sarkar
    • 2
  • B I. Sharma
    • 1
  • V. K. Shrikhande
    • 2
  • G. P. Kothiyal
    • 2
  1. 1.Department of PhysicsAssam UniversityAssamIndia
  2. 2.Technical Physics and Prototype Engineering DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations