Skip to main content
Log in

Porous silica coated gold nanocages for chemo-photothermal combined therapy

  • Original Paper: : Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The combination therapy that combines drug delivery with other treatments (e.g., photothermal therapy) has great advantages in treating tumors. Here, we prepared a promising versatile platform based on gold nanocages (Au NCs) poly (N-isopropylacrylamide) (PNIPAM) entrapped porous silica core−shell nanostructure (Au@SiO2-PNIPAM). This system not only served as a container for therapeutic drugs, but also had high photothermal conversion efficiency. The thermosensitive PNIPAM wrapping around porous silica acted as a gatekeeper to encapsulate the drug molecules within the channels of Au@SiO2-PNIPAM carrier. Under the light irradiation, Au NCs could absorb near-infrared (NIR) light and convert it into heat, which would promote the swelling of PNIPAM layer for releasing drug. The Au@SiO2-PNIPAM displays pH/light-responsive drug release and excellent photothermal-chemical combined therapeutic effect.

Porous silica coated Au nanocages (Au NCs) (Au@SiO2) carriers were designed and prepared for drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44:893–902

    Article  CAS  Google Scholar 

  2. Yang YJ, Tao X, Hou Q, Ma Y, Chen XL, Chen JF (2010) Mesoporous silica nanotubes coated with multilayered polyelectrolytes for pH-controlled drug release. Acta Biomater 6:3092–3100

    Article  CAS  Google Scholar 

  3. Frank C, Rachel AC, Helmuth M (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal tlating. Science 282:1111–1114

    Article  Google Scholar 

  4. Zhang Y, Chan HF, Leong KW (2013) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65:104–120

    Article  CAS  Google Scholar 

  5. Xu PS, Li SY, Li Q, Van Kirk EA, Ren J, Murdoch WJ, Zhang ZJ, Radosz M, Shen YQ (2008) Virion-mimicking nanocapsules from pH-controlled hierarchical self-assembly for gene delivery. Angew Chem Int Ed 47:1260–1264

    Article  CAS  Google Scholar 

  6. Aznar E, Oroval M, Pascual L, Murguía JR, Martínez-Máñez R, Sancenón F (2016) Gated Materials for on-command release of guest molecules. Chem Rev 116:561–718

    Article  CAS  Google Scholar 

  7. Chen ZY, Wan LH, Yuan Y, Kuang Y, Xu XY, Liao T, Liu J, Xu ZQ, Jiang BB, Li C (2020) pH/GSH-dual-sensitive hollow mesoporous silica nanoparticle-based drug delivery system for targeted cancer therapy. ACS Biomater 6:3375–3387

    Article  CAS  Google Scholar 

  8. Bai L, Yi W, Wang Y, Tian Y, Zhou B, Yi T, Zhang P, Cheng X, Si J, Hou X, Hou J (2021) A PdMo bimetallene with precise wavelength adjustment and catalysis for synergistic photothermal ablation and hydrogen therapy of cancer at different depths. J Mater Chem B 9:6441–6459

    Article  CAS  Google Scholar 

  9. Liu JW, Liu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643

    Article  CAS  Google Scholar 

  10. Abrams MJ, Murrer BA (1993) Metal compounds in therapy and diagnosis. Science 261(5122):725–730

    Article  CAS  Google Scholar 

  11. Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999–2004

    CAS  Google Scholar 

  12. Liao HW, Nehl CL, Hafner JH (2006) Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 1:201–208

    Article  CAS  Google Scholar 

  13. Chen JY, Wang DL, Xi JF, Au L, Siekkinen A, Warsen A, Li ZY, Zhang H, Xia YN, Li XD (2007) Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett 7:1318–1322

    Article  CAS  Google Scholar 

  14. Koutecky J, Pacchioni G, Jeung GH (1985) Comparative study of tetramers built from I a,II a, III a, and IV a atoms. Surf Sci 156:650–669

    Article  CAS  Google Scholar 

  15. Dipankar S, Halas NJ (1997) General vector basis function solution of Maxwell’s equations. Am Phys Soc 56:1102–1112

    Google Scholar 

  16. Sun YG, Xia YN (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 74:5297–5305

    Article  CAS  Google Scholar 

  17. Montoto AH, Montes R, Samadi A, Gorbe M, Terres JM, Cao-Milan R, Aznar E, Ibanez J, Masot R, Marcos MD, Orzaez M, Sancenon F, Oddershede LB, Martinez-Manez R (2018) Gold nanostars coated with mesoporous silica are effective and nontoxic photothermal agents capable of gate keeping and laser-induced drug release. ACS Appl Mater Interfaces 10:27644–27656

    Article  Google Scholar 

  18. Skrabalak SE, Chen J, Au L, Lu X, Li X, Xia YN (2007) Gold nanocages for biomedical applications. Adv Mater 19:3177–3184

    Article  CAS  Google Scholar 

  19. Au L, Chen JY, Wang LV, Xia YN (2010) Gold Nanocages for cancer imaging and therapy. Cancer Nanotechnol 1:83–99

    Article  Google Scholar 

  20. Yang JP, Shen DK, Zhou L, Li W, Li XM, Yao C, Wang R, El-Toni AM, Zhang F, Zhao DY (2013) Spatially confined fabrication of core-shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release. Chem Mater 25:3030–3037

    Article  CAS  Google Scholar 

  21. Shi P, Liu Z, Dong K, Ju EG, Ren JS, Du YD, Li ZQ, Qu XG (2014) A smart “sense-act-treat” system: combining a ratiometric pH sensor with a near infrared therapeutic gold nanocage. Adv Mater 26:6635–6641

    Article  CAS  Google Scholar 

  22. Peng SW, He YY, Er M, Sheng YQ, Gu YQ, Chen HY (2017) Biocompatible CuS-based nanoplatforms for efficient photothermal therapy and chemotherapy in vivo. Biomater Sci 5:475–484

    Article  CAS  Google Scholar 

  23. Yin NQ, Wu P, Yang TH, Wang M (2017) Preparation and study of a mesoporous silica-coated Fe3O4 photothermal nanoprobe. RSC Adv 7:9123–9129

    Article  CAS  Google Scholar 

  24. Zhao W, Li AH, Chen C, Quan FY, Sun L, Zhang AT, Zheng YW, Liu JQ (2017) Teansferrin-decorated, MoS2-capped hollow mesoporous silica nanospheres as a self-guided chemo-photothermal nanoplatform for controlled drug release and thermotherapy. J Mater Chem B 5:7403–7414

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbao Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Chen, Y., Zhao, Y. et al. Porous silica coated gold nanocages for chemo-photothermal combined therapy. J Sol-Gel Sci Technol 100, 562–570 (2021). https://doi.org/10.1007/s10971-021-05672-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05672-1

Keywords

Navigation