Advertisement

Assembly of 1T-WSe2: Sn nanosheets/graphene by a modified hydrothermal process for water splitting

  • H.-Y. HeEmail author
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • 9 Downloads

Abstract

Transition metal dichalcogenides are one category of potential hydrogen evolution catalyst. Their metallic (1T) structure possesses peculiar optoelectrical properties and so excellent catalytic activity for hydrogen evolution. Here we report a facile modified hydrothermal approach assembling 1T-WSe2 nanosheets and their hybrids with reduced graphene oxide (RGO). The assembled WSe2 nanosheets and the hybrids all showed 1T structures. Moreover, incorporating RGO and doping Sn cation resulted in an efficient interface-induced effect and higher electrical transfer performance and so beneficial properties for hydrogen evolution catalysis. Thus, the RGO/1T-WSe2: Sn nanosheet hybrids showed very high activity and stability for hydrogen evolution catalysis. This work suggests highly efficient and low-cost processes to obtain promising hybrid materials for highly efficient hydrogen evolution catalysis and other photoelectrical applications.

Highlights

  • RGO/1T-WSe2: Sn nanosheet nanostructures were assembled by a modified hydrotehrmal process.

  • RGO incorporation introduces interface effect.

  • Sn doping increased electrical conductivity.

  • H2 evolution photocatalytic and electrocatalytic properties were evaluated.

  • Sn doping and RGO incorporation enhanced the hydrogen evolution catalytic properties.

Keywords

WSe2 Metallic structure Graphene Nanostructures Hydrogen evolution 

Notes

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.

Supplementary material

10971_2019_5208_MOESM1_ESM.docx (271 kb)
Supplementary information

References

  1. 1.
    Firmiano EG, Cordeiro MA, Rabelo AC, Dalmaschio CJ, Pinheiro AN (2012) Graphene oxide as a highly selective substrate to synthesize a layered MoS2 hybrid electrocatalyst. Chem Commun 48:7687–7689CrossRefGoogle Scholar
  2. 2.
    Hannemann B (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309CrossRefGoogle Scholar
  3. 3.
    Jaramillo TF (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102CrossRefGoogle Scholar
  4. 4.
    Lukowski MA (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274–10277CrossRefGoogle Scholar
  5. 5.
    Zhang WL (2016) Soluble, exfoliated two-dimensional nanosheets as excellent aqueous lubricants. ACS Appl Mater Interfaces 8:32440–32449CrossRefGoogle Scholar
  6. 6.
    Wang HT (2014) Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 8:4940–4947CrossRefGoogle Scholar
  7. 7.
    Yang J, Wang K, Zhu J-X, Zhang C, Liu T-X (2016) Self-templated growth of vertically aligned 2H-1T MoS2 for efficient electrocatalytic hydrogen evolution. ACS Appl Mater Interfaces 8:31702–31708CrossRefGoogle Scholar
  8. 8.
    Gupta U, Naidu BS, Maitra U, Singh A (2014) Characterization of few-layer 1T-MoSe2 and its superior performance in the visible-light-induced hydrogen evolution reaction. APL Mater 2:092802CrossRefGoogle Scholar
  9. 9.
    Tangi M, Mishra P, Tseng C-C, Ng TK, Hedhili MN, Anjum DH, Alias MS, Wei N-N, Li L-J, Ooi. BS (2017) Band alignment at GaN/single-layer WSe2 interface. ACS Appl Mater Interfaces 9:9110–9117CrossRefGoogle Scholar
  10. 10.
    Zou M-L, Chen J-D, Xiao L-F, Zhu H, Yang T-T, Zhang M, Du M-L (2015) WSe2 and (SexS1−x)2 nanoflakes grown on carbon nanofibers for the electrocatalytic hydrogen evolution reaction. J Mater Chem A 3:18090–18097CrossRefGoogle Scholar
  11. 11.
    Wang XQ, Chen YF, Zheng BJ, Qi F, He JR, Li Q, Li PJ, Zhang WL (2017) Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution. J Alloy Compd 691:698–704CrossRefGoogle Scholar
  12. 12.
    Zhang WL, Cao Y-L, Tian PY, Guo F, Tian Y, Zheng W, Ji X-Q, Liu J-Q (2016) Soluble, exfoliated two-dimensional nanosheets as excellent aqueous lubricants. ACS Appl Mater Interfaces 8:32440–32449.  https://doi.org/10.1021/acsami.6b09752 CrossRefGoogle Scholar
  13. 13.
    Ambrosi A, Sofer Z, Pumera M (2015) 2H→ 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depend on the MX2 composition. Chem Commun 51:8450–8453CrossRefGoogle Scholar
  14. 14.
    Voiry D, Goswami A, Kappera R, Castro e Silva CC, Kaplan D, Fujita T, Chen M, Asefa T, Chhowalla. M (2015) Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat Chem 7:45–49.  https://doi.org/10.1038/nchem.2108 CrossRefGoogle Scholar
  15. 15.
    Yu X-Y, Sivula K (2017) Photogenerated charge harvesting and recombination in photocathodes of solvent-exfoliated WSe2. Chem Mater 29:6863–6875CrossRefGoogle Scholar
  16. 16.
    Darabdhara G (2016) Reduced graphene oxide nanosheets decorated with Au–Pd bimetallic alloy nanoparticles towards efficient photocatalytic degradation of phenolic compounds in water. Nanoscale 8:8276–8287CrossRefGoogle Scholar
  17. 17.
    Li H, Lu G, Wang YL, Yin ZY, Cong CX, He QY, Wang L, Ding F, Yu T, Zhang H (2013) Mechanical exfoliation and characterization of single and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 9:1974–1981CrossRefGoogle Scholar
  18. 18.
    He H-Y, He Z, He Q (2018) Efficient hydrogen evolution catalytic activity of graphene/metallic MoS2 nanosheet heterostructures synthesized by a one-step hydrothermal process. Inter J Hydrog Energy 43:21835–21843CrossRefGoogle Scholar
  19. 19.
    He H-Y (2017) One-step assembly of 2H-1T MoS2:Cu/reduced graphene oxide nanosheets for highly efficient hydrogen evolution. Sci Rep. 7:45608CrossRefGoogle Scholar
  20. 20.
    He H-Y, He Z, Shen Q (2019) Reduced graphene oxide/metallic MoSe2: Cu nanosheet nanostructures grown by a chemical process for highly efficient water splitting. Mater Res Bull 111:183–190CrossRefGoogle Scholar
  21. 21.
    Lee B, Park J, Han GH, Ee H-S, Naylor CH, Liu WJ, Johnson ATC, Agarwal R (2015) Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array. Nano Lett 15:3646–3653CrossRefGoogle Scholar
  22. 22.
    DiStefano JG, Li Y, Jung HJ, Hao SQ, Murthy AA, Zhang XM, Wolverton C, Dravid VP (2018) Nanoparticle@MoS2 core-shell architecture: role of the core material Chem Letter 30:4675–4682Google Scholar
  23. 23.
    Wang Z, Dong ZG, Gu YH, Chang Y-H, Zhang L, Li L-J, Zhao WJ, Eda G, Zhang WJ, Grinblat G, Maier SA, Yang JKW, Qiu C-W, Wee ATS (2016) Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures. Nat Com 7:11283CrossRefGoogle Scholar
  24. 24.
    Meng CH (2017) Insight into the role of surface wettability in electrocatalytic hydrogen evolution reactions using light-sensitive nanotubular TiO2 supported Pt electrodes. Sci Rep. 7:41825CrossRefGoogle Scholar
  25. 25.
    Choi J, Mun J, Wang M-C, Ashraf A, Kang. S-W (2017) Hierarchical, dual-scale structures of atomically thin MoS2 for tunable wetting. Nano Lett 17:1756–1761CrossRefGoogle Scholar
  26. 26.
    Zhou J, Fang G-Z, Pan A-P, Liang S-Q (2016) Oxygen-incorporated MoS2 nanosheets with expanded interlayers for hydrogen evolution reaction and pseudocapacitor applications. ACS Appl Mater Interfaces 8:33681–33689CrossRefGoogle Scholar
  27. 27.
    Wang Y-J, Zhao S-R, Wang Y-C, Laleyan DA, Wu Y-P, Ouyang B, Ou P-F, Song J, Mi Z-T (2018) Wafer-scale synthesis of monolayer WSe2: a multi-functional photocatalyst for efficient overall pure water splitting. Nano Energy 51:54–60CrossRefGoogle Scholar
  28. 28.
    Wang X-Q, Chen Y-F, Zheng B-J, Qi F, He J-R, Li Q, Li P-J, Zhang W-L (2016) Few-layered WSe2 nanoflowers anchored on graphene nanosheets: a highly efficient and stable electrocatalyst for hydrogen evolution. Electrochim Acta 222:1293–1299CrossRefGoogle Scholar
  29. 29.
    Cho JS, Park S-K, Jeon KM, Piao Y-Z, Kang YC (2018) Mesoporous reduced graphene oxide/WSe2 composite particles for efficient sodium-ion batteries and hydrogen evolution reactions. Appl Surf Sci 459:309–317CrossRefGoogle Scholar
  30. 30.
    Wang X-Q, Chen Y-F, Zheng B-J, Qi F, He J-R, Li Q, Li P-J, Zhang W-L, Li Y-R (2016) Interwoven WSe2/CNTs hybrid network: a highly efficient and stable electrocatalyst for hydrogen evolution. Electrochem Commun 72:74–78CrossRefGoogle Scholar
  31. 31.
    Najafi L, Bellani S, Martín-García B, Oropesa-Nuñez R, Del Rio Castillo AE, Prato M, Moreels I, Bonaccorso F (2017) Solution-processed hybrid graphene flake/2H-MoS2 quantum dot heterostructures for efficient electrochemical hydrogen evolution. Chem Mater 29:5782–5786CrossRefGoogle Scholar
  32. 32.
    Zhang JY, Wang T-T, Liu P-T, Liu Y-G, Ma J, Gao D-Q (2016) Enhanced catalytic activities of metal-phase-assisted 1T@2H-MoSe2 nanosheets for hydrogen evolution. Electrochim Acta 217:181–186CrossRefGoogle Scholar
  33. 33.
    Jiang Q-Q, Lu Y-F, Huang Z-X, Hu J-C (2017) Facile solvent-thermal synthesis of ultrathin MoSe2 nanosheets for hydrogen evolution and organic dyes adsorption. Appl Surf Sci 402:277–285 365CrossRefGoogle Scholar
  34. 34.
    Najafi L, Bellani S, Martín-García B, Castillo AEDR, Prato M, Moreels I, Bonaccorso F (2017) Solution-processed hybrid graphene flake/2H-MoS2 quantum dot heterostructures for efficient electrochemical hydrogen evolution. Chem Mater 29:5782–5786CrossRefGoogle Scholar
  35. 35.
    Butler MA, Ginley DS (1978) Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J Electrochem Soc 125:228–232CrossRefGoogle Scholar
  36. 36.
    Hölzl J, Schulte FK (1979) Work function of metals. In Höhler G (ed) Solids surface science. Springer-Verlag, BerlinGoogle Scholar
  37. 37.
    Sun X-L, Zhang B-T, Li Y-L, Luo X-Y, Li G-R, Chen Y-X, Zhang C-Q, He J-L (2018) Tunable ultrafast nonlinear optical properties of graphene/MoS2 van der Waals heterostructures and their application in solid-state bulk lasers. ACS Nano 12:11376–11385.  https://doi.org/10.1021/acsnano.8b06236 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.College of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic MaterialsShaanxi University of Science and TechnologyXi’anChina

Personalised recommendations