Advertisement

Influence of metal (M = Cd, In, and Sn) dopants on the properties of spin-coated WO3 thin films and fabrication of temperature-dependent heterojunction diodes

  • M. Raja
  • J. ChandrasekaranEmail author
  • M. Balaji
  • P Kathirvel
  • R. Marnadu
Original Paper: Characterization methods of sol–gel and hybrid materials
  • 14 Downloads

Abstract

Metal-doped tungsten trioxide (M = Cd, In, and Sn:WO3) thin films were prepared using sol–gel spin-coating and their structural, optical, electrical properties were studied for the fabrication of p–n heterojunction diode. X-ray diffraction (XRD) analysis revealed that Cd, In, and Sn dopants have a strong influence on the lattice parameters and defect factor without making any changes in the structure. Scanning electron microscope (SEM) images reflect that the dopants have a strong impact on the surface morphologies of the WO3 thin film. The UV–visible analysis shows a high optical transmittance (∼82%) and variation in the bandgap was also obtained. The dc electrical conductivity (σdc) indicates that the band conduction mechanism is predominant in the pure and doped M:WO3 thin films. Current density–voltage (JV) characteristics of WO3/p-Si, Cd:WO3/p-Si, In:WO3/p-Si, and Sn:WO3/p-Si diodes were measured under dark and illumination conditions. In which, the Sn:WO3/p-Si diode exhibits better performance with good ideality factor (n = 2.6) and barrier height (ФB = 0.90) values for under illumination. Most importantly, the JVT characteristics of all the fabricated diodes were analyzed with different temperatures (303–423 K).

Highlights

  • High quality WO3 thin films were prepared by sol–gel spin coating technique.

  • Effect of metal dopants (Cd, In and Sn) on structural and optical properties of WO3 thin films were investigated.

  • Microplate-like structure was grown on glass substrates.

  • High-sensitive heterojunction diodes were fabricated.

Keywords

Sol–gel spin coating Ideality factor WO3 thin films Heterojunction diodes 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the DST, Government of India, for the major research project (EMR/2016/007874).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Li N, Stubhan T, Luechinger NA, Halim SC, Matt GJ, Ameri T, Brabec CJ (2012) Org Electron 13:2479CrossRefGoogle Scholar
  2. 2.
    Kadir R, Zhang W, Wang Y, Ou JZ, Wlodarski W, OMullane AP, Bryantc G, Taylor M, Kalantar-zadeh K (2015) J Mater Chem A 3:7994CrossRefGoogle Scholar
  3. 3.
    Kim YH, Kwon S, Lee JH, Park SM, Lee YM, Kim JW (2011) J Phys Chem C 115:6599CrossRefGoogle Scholar
  4. 4.
    Eom TS, Kim KH, Bark CW, Choi HW (2014) Mol Cryst Liq Cryst 602:81CrossRefGoogle Scholar
  5. 5.
    Meng X, Quenneville F, Venne F, Di Mauro E, Isik D, Barbosa M, Drolet Y, Natile MM, Rochefort D, Soavi F, Santato C (2015) J Phys Chem C 119:21732CrossRefGoogle Scholar
  6. 6.
    Avellaneda CO, Bulhoes LOS (2003) Solid State Ion 165:117CrossRefGoogle Scholar
  7. 7.
    Fang G, Liu Z, Yao KL (2001) J Phys D: Appl Phys 34:2260CrossRefGoogle Scholar
  8. 8.
    Wang W, Chen S, Yang PX, Duana CG, Wang LW (2013) J Mater Chem A 1:1078CrossRefGoogle Scholar
  9. 9.
    Raja M, Chandrasekaran J, Balaji M (2017) Silicon 9:201CrossRefGoogle Scholar
  10. 10.
    Raja M, Chandrasekaran J, Balaji M, Janarthanan B (2016) Mater Sci Semicond Process 56:145CrossRefGoogle Scholar
  11. 11.
    Vuong NM, Kim D, Kim H (2015) Sci Rep 5:11040CrossRefGoogle Scholar
  12. 12.
    Patil PS, Mujawar SH, Inamdar AI, Shinde PS, Deshmukh HP, Sadale SB (2005) Appl Surf Sci 252:1643CrossRefGoogle Scholar
  13. 13.
    Lethy KJ, Beena D, Pillai VPM, Ganesan V (2008) J Appl Phys 104:033515CrossRefGoogle Scholar
  14. 14.
    Mukherjee R, Prajapati CS, Sahay PP (2014) J Therm Spray Technol 23:1445CrossRefGoogle Scholar
  15. 15.
    Balaji M, Chandrasekaran J, Raja M, Marnadu R (2019) Mater Res Express 6:106404CrossRefGoogle Scholar
  16. 16.
    Jansi Rani B, Ravi G, Yuvakkumar R, Ravichandran S, Ameen F, Al Nadhary S (2018) Renew Energy  https://doi.org/10.1016/j.renene.2018.10.067 CrossRefGoogle Scholar
  17. 17.
    Scafé E, Maletta G, Tomaciello R, Alessandrini P, Camanzi A, De Angelis L, Galluzzi F (1983) Sol Cells 10:17CrossRefGoogle Scholar
  18. 18.
    Deng Y, Yang J, Yang R, Shen K, Wang D, Wang D (2016) AIP Adv 6:015203CrossRefGoogle Scholar
  19. 19.
    Avellaneda CO, Bueno PR, Faria RC, Bulhoes LOS (2001) Electrochim Acta 46:1977CrossRefGoogle Scholar
  20. 20.
    Tesfamichael T, Ponzoni A, Ahsan M, Faglia G (2012) Sens Actuators B 168:345CrossRefGoogle Scholar
  21. 21.
    Mukherjee R, Prajapati CS, Sahay PP (2014) J Mater Eng Perform 23:3141CrossRefGoogle Scholar
  22. 22.
    Park KW (2005) Electrochim Acta 50:4690CrossRefGoogle Scholar
  23. 23.
    Bathe SR, Patil PS (2008) Solid State Ion 179:314CrossRefGoogle Scholar
  24. 24.
    Gaury J, Kelder EM, Bychkov E, Biskos G (2013) Thin Solid Films 534:32CrossRefGoogle Scholar
  25. 25.
    Mehmood F, Iqbal J, Jan T, Ahmed W, Ahmed W, Arshad A, Mansoor Q, Ilyas SZ, Ismail M, Ahmad I (2016) Ceram Int 42:14334CrossRefGoogle Scholar
  26. 26.
    Kalanur SS (2019) Catalysts 9:456CrossRefGoogle Scholar
  27. 27.
    Balaji M, Chandrasekaran J, Raja M, Rajesh S (2016) J Mater Sci: Mater Electron 27:11646Google Scholar
  28. 28.
    Shannon RD (1976) Acta Cryst A 32:751CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Li Yuehua, Ren X, Gao F, Zhao H (2017) Nanomaterials 7:410CrossRefGoogle Scholar
  30. 30.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction. 3rd edn. Prentice-Hall Inc., p 167, https://www.scholars.northwestern.edu/en/publications/elements-of-x-ray-diffraction-third-edition
  31. 31.
    Patel PP, Datta MK, Velikokhatnyi OI, Kuruba R, Damodaran K, Jampani P, Gattu B, Shanthi PM, Damle SS, Kumta PN, Sci Rep.  https://doi.org/10.1038/srep28367
  32. 32.
    Marnadu R, Chandrasekaran J, Maruthamuthu S, Vivek P, Balasubramani V, Balraju P (2019) J Inorg Organomet Polym Mater,  https://doi.org/10.1007/s10904-019-01285-y
  33. 33.
    Marnadu R, Chandrasekaran J, Raja M, Balaji M, Maruthamuthu S, Balraju P (2018) Superlattices Microstruct 119:134CrossRefGoogle Scholar
  34. 34.
    Regragui M, Jousseaume V, Addou M, Outzourhit A, Bernede JC, El Idrissi B (2001) Thin Solid Films 397:238CrossRefGoogle Scholar
  35. 35.
    Sze M, Ng Kwok K Physics of semiconductor devices. (3rd Ed., Simon, 2006). https://www.wiley.com/en-us/Physics+of+Semiconductor+Devices%2C+3rd+Edition-p-9780471143239 CrossRefGoogle Scholar
  36. 36.
    Gayen RN, Paul R (2016) Thin Solid Films 605:248CrossRefGoogle Scholar
  37. 37.
    Marnadu R, Chandrasekaran J, Maruthamuthu S, Balasubramani V, Vivek P, Suresh R (2019) Appl. Surf. Sci. 480:308CrossRefGoogle Scholar
  38. 38.
    Marnadu R, Chandrasekaran J, Raja M, Balaji M, Balasubramani V (2018) J Mater Sci Mater Electron 29:2618CrossRefGoogle Scholar
  39. 39.
    Vivek P, Chandrasekaran J, Marnadu R, Maruthamuthu S, Balasubramani V (2019) Superlattices Microstruct. 133:106197lCrossRefGoogle Scholar
  40. 40.
    Marnadu R, Chandrasekaran J, Vivek P, Balasubramani V, Maruthamuthu S (2019) Z Phys Chem,  https://doi.org/10.1515/zpch-2018-1289.
  41. 41.
    Cetin H, Ayyildiz E (2007) Physica B 394:93CrossRefGoogle Scholar
  42. 42.
    Dokme I (2011) Microelectron Reliab 51:360CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • M. Raja
    • 1
  • J. Chandrasekaran
    • 2
    Email author
  • M. Balaji
    • 3
  • P Kathirvel
    • 4
  • R. Marnadu
    • 2
  1. 1.Vivekanandha College of Arts and Sciences for WomenTiruchengodeIndia
  2. 2.Department of PhysicsSri Ramakrishna Mission Vidyalaya College of Arts and ScienceCoimbatoreIndia
  3. 3.Department of PhysicsBannari Amman Institute of TechnologySathyamanglamIndia
  4. 4.GRD Centre for Materials Research, Department of PhysicsPSG College of TechnologyCoimbatoreIndia

Personalised recommendations