Advertisement

Mechanical properties and decohesion of sol–gel coatings on metallic and glass substrates

  • David MercierEmail author
  • Arnaud Nicolay
  • Abdelhamid Boudiba
  • Xavier Vanden Eynde
  • Laure Libralesso
  • Alain Daniel
  • Marjorie Olivier
Original Paper: Characterization methods of sol-gel and hybrid materials
  • 29 Downloads

Abstract

The sol–gel coating method is considered to be simple and easy to implement to lead to organic/inorganic hybrid coatings. In addition, the application of thin films by this technique is inexpensive and applicable on large substrates without form restriction. In this context, thin sol–gel coatings based on a mixture of three alkoxysilanes and synthesized in purely aqueous phase with different thicknesses and with the presence or not of ZrO2 nanoparticles, were applied on metallic and glass substrates. After application and curing, the mechanical properties of sol–gel coatings were characterized by Berkovich nanoindentation with continuous stiffness measurement mode (CSM). The effective elastic moduli as well as the hardness values were estimated for each coating along the indentation depth and as a function of the substrate material and sol–gel characteristics. The effect of a annealing at higher temperature was also studied. Then, the failure modes of sol–gel coatings were investigated using both Berkovich nanoindentation and nanoscratch technique with a 5 µm radius spherical diamond tip. Careful microscopic observations of residual imprints and residual grooves both exhibit chipping in case of thick coating especially on glass substrate and no dramatic failure for thin coating applied on both substrates. It is shown in this work that the mechanical properties of the sol–gel and the mechanical stability of coatings on substrates are influenced dramatically by the presence of nanoparticles and the thermal treatment. Finally, interfacial fracture toughness of sol–gel coatings on substrate was estimated using analytical model from the literature and Ashby map based on experimental results was created using performance indices in order to proceed to sol–gel coating selection.

Highlights

  • Mechanical characterization of sol–gel coatings using a combination of different nanomechanical experiments.

  • Effects of nanoparticles addition and thermal treatment on mechanical coating stability.

  • Construction of Ashby map using experimental results for sol–gel coating selection.

Keywords

Organic/inorganic hybrid coatings Nanoindentation Nanoscratch Failure mode Interfacial fracture toughness Selection map 

Notes

Acknowledgements

The authors would like to thank the MecaTech Cluster and the Walloon region for the financial support, in the frame of the Nanosol project. The authors would also like to thank the Walloon region for financial support in the frame of the INDMAT project (BEWARE FELLOWSHIPS), co-funded by the European Union (FP7—Marie Curie Actions). The authors are grateful to Luiza Bonin (UMons) for the 3D microscopic visualization and to Recayi Bilgic (CRM Group) for the AFM observations of residual indents and scratches.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aparicio M et al. (2016) Corrosion Protection of AISI 304 Stainless Steel with Melting Gel Coatings. Electrochim Acta 202(Supplement C):325–332CrossRefGoogle Scholar
  2. 2.
    Ćurković L, Ćurković HO, Salopek S, Renjo MM, Šegota S (2013) Enhancement of corrosion protection of AISI 304 stainless steel by nanostructured sol–gel TiO2 films. Corros Sci 77:176–184CrossRefGoogle Scholar
  3. 3.
    Feng Z, Liu Y, Thompson GE, Skeldon P (2010) Sol–gel coatings for corrosion protection of 1050 aluminium alloy. Electrochim Acta 55(10):3518–3527CrossRefGoogle Scholar
  4. 4.
    Vignesh RB, Edison TNJI, Sethuraman MG (2014) ‘Sol–Gel coating with 3-Mercaptopropyltrimethoxysilane as precursor for corrosion protection of aluminium metal. J Mater Sci Technol 30(8):814–820CrossRefGoogle Scholar
  5. 5.
    Nezamdoust S, Seifzadeh D (2017) Application of CeH–V/ sol–gel composite coating for corrosion protection of AM60B magnesium alloy. Trans Nonferrous Met Soc China 27(2):352–362CrossRefGoogle Scholar
  6. 6.
    Martini C, Ceschini L (2011) A comparative study of the tribological behaviour of PVD coatings on the Ti-6Al-4V alloy. Tribol Int 44(3):297–308CrossRefGoogle Scholar
  7. 7.
    Damasceno JC, Camargo SS, Cremona M (2002) Deposition and evaluation of DLC–Si protective coatings for polycarbonate materials. Thin Solid Films 420–421:195–199CrossRefGoogle Scholar
  8. 8.
    Dave BC, Hu X, Devaraj Y, Dhali SK (2004) Sol–gel-derived corrosion-protection coatings. J Sol–Gel Sci Technol 32(1–3):143–147CrossRefGoogle Scholar
  9. 9.
    Wang D, Bierwagen GordonP (2009) Sol–gel coatings on metals for corrosion protection. Prog Org Coat 64(4):327–338CrossRefGoogle Scholar
  10. 10.
    Zheng S, Li J (2010) Inorganic–organic sol gel hybrid coatings for corrosion protection of metals. J Sol–Gel Sci Technol 54(2):174–187CrossRefGoogle Scholar
  11. 11.
    Fabes BD, Uhlmann DR (1990) Strengthening of glass by sol-gel coatings. J Am Ceram Soc 73(no. 4):978–988CrossRefGoogle Scholar
  12. 12.
    Guglielmi M (1997) Sol-Gel Coatings on Metals. J Sol–Gel Sci Technol 8(1–3):443–449Google Scholar
  13. 13.
    Mammeri F, Le Bouhris E, Rozes L, Sanchez C (2005) Mechanical properties of hybrid organic–inorganic materials. J Mater Chem 15(35–36):3787–3811CrossRefGoogle Scholar
  14. 14.
    S Zhang (2010) Nanostructured thin films and coatings: mechanical properties. CRC Press, USAGoogle Scholar
  15. 15.
    Levy D, Zayat M (2015) The sol–gel handbook: synthesis, characterization and applications, 3–volume set. Wiley VCH, WeinheimCrossRefGoogle Scholar
  16. 16.
    Tlili B, Barkaoui A, Walock M (2016) Tribology and wear resistance of the stainless steel. The sol–gel coating impact on the friction and damage. Tribol Int 102:348–354CrossRefGoogle Scholar
  17. 17.
    F-X Perrin, ‘Films inorganiques et hybrides protecteurs obtenus par voie sol-gel’, Techniques de l’ingénieur Traitements de surface des métaux en milieu aqueux. vol. base documentaire: TIB359DUO, no. ref. article: m1722, 2007.Google Scholar
  18. 18.
    Osborne JH et al. (2001) Testing and evaluation of nonchromated coating systems for aerospace applications. Prog Org Coat 41(4):217–225CrossRefGoogle Scholar
  19. 19.
    Yang Y-Q, Liu L, Hu J-M, Zhang J-Q, Cao C-N (2012) Improved barrier performance of metal alkoxide-modified methyltrimethoxysilane films. Thin Solid Films 520(6):2052–2059CrossRefGoogle Scholar
  20. 20.
    Rauter A, Slemenik Perše L, Orel B, Bengű B, Sunetci O, Šurca Vuk A (2013) Ex situ IR and Raman spectroscopy as a tool for studying the anticorrosion processes in (3-glycidoxypropyl)trimethoxysilane-based sol–gel coatings. J Electroanal Chem 703:97–107CrossRefGoogle Scholar
  21. 21.
    Kunst SR et al. (2014) Corrosion resistance of siloxane–poly(methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition. Appl Surf Sci 298:1–11CrossRefGoogle Scholar
  22. 22.
    Dias SAS, Lamaka SV, Nogueira CA, Diamantino TC, Ferreira MGS (2012) Sol–gel coatings modified with zeolite fillers for active corrosion protection of AA2024. Corros Sci 62:153–162CrossRefGoogle Scholar
  23. 23.
    Lamaka SV et al. (2008) Novel hybrid sol–gel coatings for corrosion protection of AZ31B magnesium alloy. Electrochim Acta 53(14):4773–4783CrossRefGoogle Scholar
  24. 24.
    Garcia RBR, da Silva FS, Kawachi EY (2013) New sol–gel route for SiO2/ZrO2 film preparation. Colloids Surf A Physicochem Eng Asp 436:484–488CrossRefGoogle Scholar
  25. 25.
    Capelossi VR, Poelman M, Recloux I, Hernandez RPB, de Melo HG, Olivier MG (2014) Corrosion protection of clad 2024 aluminum alloy anodized in tartaric-sulfuric acid bath and protected with hybrid sol–gel coating. Electrochim Acta 124:69–79CrossRefGoogle Scholar
  26. 26.
    Roussi E, Tsetsekou A, Skarmoutsou A, Charitidis CA, Karantonis A (2013) Anticorrosion and nanomechanical performance of hybrid organo-silicate coatings integrating corrosion inhibitors. Surf Coat Technol 232:131–141CrossRefGoogle Scholar
  27. 27.
    Fedel M, Olivier M, Poelman M, Deflorian F, Rossi S, Druart M-E (2009) Corrosion protection properties of silane pre-treated powder coated galvanized steel. Prog Org Coat 66(2):118–128CrossRefGoogle Scholar
  28. 28.
    Nicolay A et al. (2015) Elaboration and characterization of a multifunctional silane/ZnO hybrid nanocomposite coating. Appl Surf Sci 327:379–388CrossRefGoogle Scholar
  29. 29.
    Sabzi M, Mirabedini SM, Zohuriaan-Mehr J, Atai M (2009) Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Prog Org Coat 65(2):222–228CrossRefGoogle Scholar
  30. 30.
    Peng B, Huang Y, Chai L, Li G, Cheng M, Zhang X (2007) Influence of polymer dispersants on dispersion stability of nano-TiO2 aqueous suspension and its application in inner wall latex paint. J Cent South Univ Technol 14(4):490–495CrossRefGoogle Scholar
  31. 31.
    Luo K, Zhou S, Wu L (2009) High refractive index and good mechanical property UV-cured hybrid films containing zirconia nanoparticles. Thin Solid Films 517(21):5974–5980CrossRefGoogle Scholar
  32. 32.
    Piwoński I, Soliwoda K (2010) The effect of ceramic nanoparticles on tribological properties of alumina sol–gel thin coatings. Ceram Int 36(1):47–54CrossRefGoogle Scholar
  33. 33.
    Banerjee DA, Kessman AJ, Cairns DR, Sierros KA (2014) Tribology of silica nanoparticle-reinforced, hydrophobic sol–gel composite coatings. Surf Coat Technol 260:214–219CrossRefGoogle Scholar
  34. 34.
    Song J, Liu Y, Liao Z, Wang S, Tyagi R, Liu W (2016) Wear studies on ZrO2-filled PEEK as coating bearing materials for artificial cervical discs of Ti6Al4V. Mater Sci Eng C 69:985–994CrossRefGoogle Scholar
  35. 35.
    Atanacio AJ, Latella BA, Barbé CJ, Swain MV (2005) Mechanical properties and adhesion characteristics of hybrid sol–gel thin films. Surf Coat Technol 192(2–3):354–364CrossRefGoogle Scholar
  36. 36.
    Fabes BD, Oliver WC (1990) Mechanical properties of sol-gel coatings. J Non-Cryst Solids 121(1):348–356CrossRefGoogle Scholar
  37. 37.
    Chan CM, Cao GZ, Fong H, Sarikaya M, Robinson T, Nelson L (2000) Nanoindentation and adhesion of sol-gel-derived hard coatings on polyester. J Mater Res 15(01):148–154CrossRefGoogle Scholar
  38. 38.
    Latella BA, Gan BK, Barbé CJ, Cassidy DJ (2008) Nanoindentation hardness, Young’s modulus, and creep behavior of organic–inorganic silica-based sol-gel thin films on copper. J Mater Res 23(09):2357–2365CrossRefGoogle Scholar
  39. 39.
    J Hay (2009) Mechanical characterization of sol–gel coatings using a nano indenter G200. Application Notes from Agilent Technologies. https://www.agilent.com/
  40. 40.
    Piombini H, Ambard C, Compoint F, Valle K, Belleville PSanchez C (2015) Indentation hardness and scratch tests for thin layers manufactured by sol–gel process. In: CLEO: Applications and TechnologyGoogle Scholar
  41. 41.
    Ballarre J, Jimenez-Pique E, Anglada M, Pellice SA, Cavalieri AL (2009) Mechanical characterization of nano-reinforced silica based sol–gel hybrid coatings on AISI 316L stainless steel using nanoindentation techniques. Surf Coat Technol 203(20–21):3325–3331CrossRefGoogle Scholar
  42. 42.
    Malzbender J, de With G, den Toonder JMJ (2000) Determination of the elastic modulus and hardness of sol–gel coatings on glass: influence of indenter geometry. Thin Solid Films 372(1–2):134–143CrossRefGoogle Scholar
  43. 43.
    BA Latella, MV Swain, M Ignat (2012) Indentation and fracture of hybrid sol-gel silica films. In: J Nemecek (ed.) Nanoindentation in materials science, IntechOpen, London (UK)Google Scholar
  44. 44.
    Latella BA, Ignat M (2012) Interface fracture surface energy of sol–gel bonded silicon wafers by three-point bending. J Mater Sci Mater Electron 23(1):8–13CrossRefGoogle Scholar
  45. 45.
    Den Toonder JD, Malzbender J, With GD, Balkenende R (2002) Fracture toughness and adhesion energy of sol–gel coatings on glass. J Mater Res 17(01):224–233CrossRefGoogle Scholar
  46. 46.
    BA Latella, M Ignat, CJ Barbé, DJ Cassidy, H Li (2004) Cracking and decohesion of sol–gel hybrid coatings on metallic substrates. J Sol–Gel Sci Technol 31(1–3):143–149CrossRefGoogle Scholar
  47. 47.
    Malzbender J, Den Toonder JMJ, Balkenende AR, De With G (2002) Measuring mechanical properties of coatings: a methodology applied to nano-particle-filled sol–gel coatings on glass Mater Sci Eng R Rep 36(2):47–103CrossRefGoogle Scholar
  48. 48.
    Chen L, Yeap KB, She CM, Liu GR (2011) A computational and experimental investigation of three-dimensional micro-wedge indentation-induced interfacial delamination in a soft-film-on-hard-substrate system. Eng Struct 33(12):3269–3278CrossRefGoogle Scholar
  49. 49.
    Mercier D, Mandrillon V, Parry G, Verdier M, Estevez R, Bréchet Y, Maindron T (2017) Investigation of the fracture of very thin amorphous alumina film during spherical nanoindentation. Thin Solid Films 638:34–47.  https://doi.org/10.1016/j.tsf.2017.07.040 CrossRefGoogle Scholar
  50. 50.
    Thouless MD (1998) An analysis of spalling in the microscratch test. Eng Fract Mech 61(1):75–81CrossRefGoogle Scholar
  51. 51.
    Malzbender J, de With G (2002) A model to determine the interfacial fracture toughness for chipped coatings. Surf Coat Technol 154(1):21–26CrossRefGoogle Scholar
  52. 52.
    Xie Y, Hawthorne HM (2003) Measuring the adhesion of sol–gel derived coatings to a ductile substrate by an indentation-based method. Surf Coat Technol 172(1):42–50CrossRefGoogle Scholar
  53. 53.
    Bull SJ, Berasetegui EG (2006) An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol Int 39(2):99–114CrossRefGoogle Scholar
  54. 54.
    Granta Design Ltd. (2019) CES Selector version 2019, Cambridge (UK). https://grantadesign.com
  55. 55.
    MF Ashby (2011) Materials selection in mechanical design, 4th edn. Butterworth-Heinemann, Oxford (UK)Google Scholar
  56. 56.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(06):1564–1583CrossRefGoogle Scholar
  57. 57.
    Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(1):3–20CrossRefGoogle Scholar
  58. 58.
    King RB (1987) Elastic analysis of some punch problems for a layered medium. Int J Solids Struct 23(12):1657–1664CrossRefGoogle Scholar
  59. 59.
    Makishima A, Mackenzie JD (1975) Calculation of bulk modulus, shear modulus and Poisson’s ratio of glass. J Non-Cryst Solids 17(2):147–157CrossRefGoogle Scholar
  60. 60.
    Ledbetter HM (1981) Stainless‐steel elastic constants at low temperatures. J Appl Phys 52(3):1587–1589CrossRefGoogle Scholar
  61. 61.
    Fischer-Cripps AC (2011) Nanoindentation, 3rd edn. Springer-Verlag, New York (USA)CrossRefGoogle Scholar
  62. 62.
    Mercier D et al. (2010) Mesure de module d’Young d’un film mince à partir de mesures expérimentales de nanoindentation réalisées sur des systèmes multicouches, Matériaux & Techniques 99.  https://doi.org/10.1051/mattech/2011029 CrossRefGoogle Scholar
  63. 63.
  64. 64.
    Lawn BR, Evans AG (1977) A model for crack initiation in elastic/plastic indentation fields. J Mater Sci 12:2195–2199CrossRefGoogle Scholar
  65. 65.
    Malzbender J, de With G (2001) The use of the indentation loading curve to detect fracture of coatings. Surf Coat Technol 137(1):72–76CrossRefGoogle Scholar
  66. 66.
    Li X, Bhushan B (1998) Measurement of fracture toughness of ultra-thin amorphous carbon films. Thin Solid Films 315(1):214–221CrossRefGoogle Scholar
  67. 67.
    Attar F, Johannesson T (1996) Adhesion evaluation of thin ceramic coatings on tool steel using the scratch testing technique. Surf Coat Technol 78(1–3):87–102CrossRefGoogle Scholar
  68. 68.
    Burnett PJ, Rickerby DS (1987) The relationship between hardness and scratch adhesion. Thin Solid Films 154(1–2):403–416CrossRefGoogle Scholar
  69. 69.
    Bull SJ, Rickerby DS, Matthews A, Leyland A, Pace AR, Valli J (1988) The use of scratch adhesion testing for the determination of interfacial adhesion: the importance of frictional drag. Surf Coat Technol 36(1):503–517CrossRefGoogle Scholar
  70. 70.
    Bull SJ, Rickerby DS (1990) New developments in the modelling of the hardness and scratch adhesion of thin films. Surf Coat Technol 42(2):149–164CrossRefGoogle Scholar
  71. 71.
    Bull SJ, Berasetegui EG (2006) An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol Int 39(2):99–114CrossRefGoogle Scholar
  72. 72.
    Lai C-M, Lin K-M, Rosmaidah S (2012) Effect of annealing temperature on the quality of Al-doped ZnO thin films prepared by sol–gel method. J Sol–Gel Sci Technol 61(1):249–257CrossRefGoogle Scholar
  73. 73.
    Bull SJ (1997) Failure mode maps in the thin film scratch adhesion test. Tribol Int 30(7):491–498CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • David Mercier
    • 1
    • 2
    Email author
  • Arnaud Nicolay
    • 3
    • 4
    • 5
  • Abdelhamid Boudiba
    • 4
  • Xavier Vanden Eynde
    • 1
  • Laure Libralesso
    • 1
  • Alain Daniel
    • 1
  • Marjorie Olivier
    • 3
  1. 1.CRM GroupLiegeBelgium
  2. 2.Ansys, Inc.—Granta Education TeamLyonFrance
  3. 3.University of Mons, Faculty of EngineeringMonsBelgium
  4. 4.Materia NovaMonsBelgium
  5. 5.Ionics GroupMonsBelgium

Personalised recommendations