Advertisement

Tri-responsive porous silica carrier with gold nanoparticles for chemophotothermal combination therapy

  • Yunyun Chen
  • Yanbao ZhaoEmail author
  • Lei Sun
  • Xueyan Zou
Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • 11 Downloads

Abstract

A multifunctional nanoplatform (pSiO2–Au/HA) combining porous silica (pSiO2) carriers and gold nanoparticles (Au NPs) was synthesized for chemophotothermal synergistic therapy. The pSiO2 carrier has the diameter size of 70 nm and high specific surface area (510.8 m2·g−1). Au NPs as photothermal agents and gatekeepers were linked to pSiO2 carriers by Au–S bonds for redox-responsive drug release and photothermal effect. Hyaluronic acid (HA) molecules were conjugated by the amide bonds on the surface of porous silica (pSiO2) to seal the drug-loaded pores and endow it pH-and enzyme-responsive property. The results demonstrated that pSiO2–Au/HA carriers displayed good pH/redox/enzyme-responsive release behavior and photothermal effect, which may be a good promising targeted delivery systems for chemophotothermal therapy.

Highlights

  • Porous silica (pSiO2) carriers were successfully prepared for drug release.

  • Hyaluronic acid (HA) and gold nanoparticles (Au NPs) are used to seal the loaded drug.

  • pSiO2-Au/HA carriers display pH/redox/enzyme-responsive release behavior.

  • pSiO2-Au/HA carriers exhibit good aqueous and photostability.

Keywords

Porous silica Nanocarriers Controlling release Photothermal effect 

Notes

Acknowledgements

Financial support of this work from National Natural Science Foundation of China (21271062) is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Adv Drug Deliv Rev 63:24–46CrossRefGoogle Scholar
  2. 2.
    Zhang Z, Wang J, Chen C (2013) Adv Mater 25:3869–3880CrossRefGoogle Scholar
  3. 3.
    Zhang X, Wang Y, Zhao Y, Sun L (2017) Mater Sci Eng C 77:19–26CrossRefGoogle Scholar
  4. 4.
    Jiang W, Mo F, Jin X, Chen L, Xu LJ, Guo L, Fu F (2017) Adv Mater Interfaces 4:1700425CrossRefGoogle Scholar
  5. 5.
    He H, Zhu R, Sun W, Cai K, Chen Y, Yin L (2018) Nanoscale 10:2856–2865CrossRefGoogle Scholar
  6. 6.
    Ranji-Burachaloo H, Reyhani A, Gurr PA, Dunstan DE, Qiao GG (2019) Nanoscale 11:5705–5716CrossRefGoogle Scholar
  7. 7.
    Markeb AA, El-Maali NA, Sayed DM, Osama A, Abdel-Malek MAY, Zaki AH, Elwanis MEA, Driscoll JJ (2016) Int J Breast Cancer 2016:1–8CrossRefGoogle Scholar
  8. 8.
    Croissant JG, Fatieiev Y, Almalik A, Khashab NM (2018) Adv Healthc Mater 7:1700831CrossRefGoogle Scholar
  9. 9.
    Cao N, Zhao Y, Sang B, Wang Z, Cao L, Sun L, Zou X (2016) Mater Sci Eng C 69:330–336CrossRefGoogle Scholar
  10. 10.
    Cao N, Xie X, Zhang Y, Zhao Y, Cao L, Sun L (2016) J Ind Eng Chem 34:9–13CrossRefGoogle Scholar
  11. 11.
    Zhang Q, Guo J, Zhang X, Zhao Y, Cao L, Sun L (2018) Sens Actuators B 276:370–377CrossRefGoogle Scholar
  12. 12.
    Montoto AH, Montes R, Samadi A, Gorbe M, Terrés JM, Cao-Milán R, Aznar E, Ibañez J, Masot R, Marcos MD, Orzáez M, Sancenón F, Oddershede LB, Martínez-Máñez R (2018) ACS Appl Mater Interfaces 10:27644–27656CrossRefGoogle Scholar
  13. 13.
    Zhang Z, Wang J, Nie X, Wen T, Ji Y, Wu X, Zhao Y, Chen C (2014) J Am Chem Soc 136:7317–7326CrossRefGoogle Scholar
  14. 14.
    Moreira AF, Rodrigues CF, Reis CA, Costa EC, Correia IJ (2018) Microporous Mesoporous Mater 270:168–179CrossRefGoogle Scholar
  15. 15.
    Hu Y, Liu Y, Xie X, Bao W, Hao J (2018) J Colloid Interface Sci 529:547–555CrossRefGoogle Scholar
  16. 16.
    Villaverde G, Gómez-Graña S, Guisasola E, García I, Hanske C, Liz-Marzán LM, Baeza A, Vallet-Regí M (2018) Part Part Syst Charact 35:1800148CrossRefGoogle Scholar
  17. 17.
    Poudel BK, Soe ZC, Ruttala HB, Gupta B, Ramasamy T, Thapa RK, Gautam M, Ou W, Nguyen HT, Jeong J-H, Jin SG, Choi H-G, Yong CS, Kim JO (2018) Int J Pharm 548:92–103CrossRefGoogle Scholar
  18. 18.
    Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N (2010) Nat Nanotech 6:28–32CrossRefGoogle Scholar
  19. 19.
    Yang Y, Lin Y, Di D, Zhang X, Wang D, Zhao Q, Wang S (2017) J Colloid Interface Sci 508:323–331CrossRefGoogle Scholar
  20. 20.
    Mattheolabakis G, Milane L, Singh A, Amiji MM (2015) J Drug Target 23:605–618CrossRefGoogle Scholar
  21. 21.
    Du X, Li X, Huang H, He J, Zhang X (2015) Nanoscale 7:6173–6184CrossRefGoogle Scholar
  22. 22.
    Tournebize J, Boudier A, Sapin-Minet A, Maincent P, Leroy P, Schneider R (2012) ACS Appl Mater Interfaces 4:5790–5799CrossRefGoogle Scholar
  23. 23.
    Qiu L, Zhao Y, Cao N, Cao L, Sun L, Zou X (2016) Sens Actuators B 234:21–26CrossRefGoogle Scholar
  24. 24.
    Zhang X, Zhao Y, Cao L, Sun L (2018) Sens Actuators B 257:105–115CrossRefGoogle Scholar
  25. 25.
    Zhou H, Xu H, Li X, Lv Y, Ma T, Guo S, Huang Z, Wang X, Xu P (2017) Mater Sci Eng C 81:261–270CrossRefGoogle Scholar
  26. 26.
    Rahoui N, Jiang B, Hegazy M, Taloub N, Wang Y, Yu M, Huang YD (2018) Colloids Surf B 171:176–185CrossRefGoogle Scholar
  27. 27.
    Guo Z, Zheng K, Tan Z, Liu Y, Zhao Z, Zhu G, Ma K, Cui C, Wang L, Kang T (2018) J Mater Chem B 6:7750–7759CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Research Center for NanomaterialsHenan UniversityKaifengChina

Personalised recommendations