Advertisement

A general method to produce mesoporous oxide spherical particles through an aerosol method from aqueous solutions

  • Andrés Zelcer
  • Esteban A. Franceschini
  • M. Verónica Lombardo
  • Anabel E. Lanterna
  • Galo J. A. A. Soler-IlliaEmail author
Original Paper: Sol–gel, hybrids and solution chemistries
  • 31 Downloads

Abstract

Mesoporous transition metal oxides (MTMO) with large surface area, nanocrystalline framework, and controlled porosity have brilliant prospects in fields such as energy, environment, catalysis, or nanomedicine. However, the green, reproducible, and scalable production of MTMO are still a bottleneck for their industrial applications. Although spray-drying methods permit to obtain MTMO in a potentially scalable fashion, the use of highly acidic alcoholic precursor solutions presents two main limitations: corrosion and flammability, which hinder their production in large quantities and lower cost. In this work, we present a general, reproducible, simple, and environment-friendly aerosol method for the synthesis of spherical MTMO particles from mildly acidic aqueous solutions. Acetylacetonate and acetate are used as condensation-controlling agents. Mixed oxides of high valence cations (M(IV) such as Ti, Zr, Ce, and their mixed oxides) were prepared with a yield over 95%, virtually without changing the formulation of the precursor mixture, which can be extended potentially to M(III) or M(V) oxides. The replacement of organic solvents by water allows working in air atmosphere, making this approach much safer, cheaper and environmentally friendly than the current aerosol-based routes. We also present the beneficial effect of mesoporous titania spheres as an additive to nickel electrodes used in the hydrogen evolution reaction, as a demonstrator to potential applications. A threefold increase in the electrocatalytic hydrogen production is observed in mesoporous titania-modified nickel electrodes with respect to a pure nickel catalyst. This performance can be further improved ~25% upon UVA-visible irradiation, due to the photoelectrocatalytic effect of the mesoporous TiO2.

Highlights

  • A green spray-pyrolysis method to produce spherical mesoporous oxides with high surface area and nanocrystalline walls from aqueous solutions is reported.

  • The method can be extended to several oxides such as TiO2, ZrO2, CeO2, and mixed oxides with high yield (95%) and minor precursor changes.

  • A nickel catalyst combined with mesoporous titania presents a threefold increase in the electrocatalytic hydrogen production, and improves further with UVA-visible irradiation.

Keywords

Mesoporous oxides Spray drying Titania Zirconia Ceria Photoelectrocatalysis 

Notes

Acknowledgements

The authors thank financial support from Agencia Nacional de Promoción Científica y Tecnológica (PICT 2015-3625, PICT Start Up 2017 –4651, PICT 2017-0250, FSNANO 2010-007, Mincyt-UOttawa OT-17/02) and CONICET. MVL acknowledges a postdoctoral fellowship from CONICET. AZ, EAF, and GJAAS-I are permanent research fellows of CONICET.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2019_5175_MOESM1_ESM.docx (925 kb)
Supplementary Information

References

  1. 1.
    Wei J, Sun Z, Luo W, Li Y, Elzatahry AA, Al-Enizi AM, Deng Y, Zhao DY (2017) J Am Chem Soc 139:1706–1713CrossRefGoogle Scholar
  2. 2.
    Alberti S, Soler-Illia GJAA, Azzaroni O (2015) Chem Commun 51:6050–6075CrossRefGoogle Scholar
  3. 3.
    Serrano E, Linares N, Garcia-Martinez J, Berenguer JR, Luque R, Garcia Martinez J (2013) ChemCatChem 5:825CrossRefGoogle Scholar
  4. 4.
    Leng J, Wang Z, Wang J, Wu HH, Yan G, Li X, Guo H, Liu Y, Zhang Q, Guo Z (2019) Chem Soc Rev 48:3015–3072CrossRefGoogle Scholar
  5. 5.
    Mercuri M, Pierpauli KA, Berli CLA, Bellino MG (2017) ACS Appl Mater Interfaces 9:16679–16684CrossRefGoogle Scholar
  6. 6.
    Vallet-Regi M, Colilla M, Izquierdo-Barba I, Manzano M (2018) Molecules 23:47CrossRefGoogle Scholar
  7. 7.
    Debecker DP, Le Bras S, Boissiere C, Chaumonnot A, Sanchez C (2018) Chem Soc Rev 47:4112–4155CrossRefGoogle Scholar
  8. 8.
    Taguchi A, Schüth F (2005) Micropor Mesopor Mater 77:1–45CrossRefGoogle Scholar
  9. 9.
    Soler-Illia GJAA, Crepaldi EL, Grosso D, Sanchez C (2003) Curr Opin Colloid Interf Sci 8:109–126CrossRefGoogle Scholar
  10. 10.
    Beitollahi A, Daie AHH, Samie L, Akbarnejad MM (2010) J Alloy Compd 490:311–317CrossRefGoogle Scholar
  11. 11.
    Arcos D, Vallet-Regí M (2013) Acta Mater 61:890–911CrossRefGoogle Scholar
  12. 12.
    Nie P, Xu G, Jiang J, Dou H, Wu Y, Zhang Y, Wang J, Shi M, Fu R, Zhang X (2018) Small Methods 2:1700272CrossRefGoogle Scholar
  13. 13.
    Bruinsma PJ, Kim AY, Liu J, Baskaran S (1997) Chem Mater 9:2507–2512CrossRefGoogle Scholar
  14. 14.
    Lu Y, Fan H, Stump A, Ward TL, Rieker T, Brinker CJ (1999) Nature 398:223–226CrossRefGoogle Scholar
  15. 15.
    Kuai L, Wang J, Ming T, Fang C, Sun Z, Geng B, Wang J (2015) Sci Rep 5:9923–9928.Google Scholar
  16. 16.
    Kuai L, Geng J, Chen C, Kan E, Liu Y, Wang Q, Geng B (2014) 53, Angew Chem Int Ed 29:7547–7551CrossRefGoogle Scholar
  17. 17.
    Li J, Wei X, Lin YS, Su D (2008) J Membr Sci 312:186–192CrossRefGoogle Scholar
  18. 18.
    Debecker DP, Hulea V, Mutin PH (2013) Appl Catal A Gen 451:192–206CrossRefGoogle Scholar
  19. 19.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice, Oxford University Press, New York, p 30Google Scholar
  20. 20.
    Mann S, Burkett S, Davis SA, Fowler CE, Mendelson NH, Sims SD, Walsh D, Whilton NT (1997) Chem Mater 9:2300–2310CrossRefGoogle Scholar
  21. 21.
    Soler-Illia GJAA, Sanchez C, Lebeau B, Patarin J (2002) Chem Rev 102:4093–4138CrossRefGoogle Scholar
  22. 22.
    Backov R (2006) Soft Matter 2:452–464CrossRefGoogle Scholar
  23. 23.
    Nicole L, Rozes L, Sanchez C (2010) Adv Mater 22:3208–3214CrossRefGoogle Scholar
  24. 24.
    Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissiere C, Nicole C (2010) R Chim 13:3–39.Google Scholar
  25. 25.
    Boissiere C, Grosso D, Chaumonnot A, Nicole L, Sanchez C (2011) Adv Mater 23:599–623CrossRefGoogle Scholar
  26. 26.
    Qiao L, Swihart MT (2017) Adv Colloid Interfac 244:199–266CrossRefGoogle Scholar
  27. 27.
    Zagaynov IV, Vorobiev AV, Kutsev SV (2015) Mater Lett 139:237–240CrossRefGoogle Scholar
  28. 28.
    Zhong J, Liang S, Zhao J, Duo W, Wu W, Liu H, Wang X, Dong Chen Y, Bing Cheng J (2012) Eur Ceram Soc 32:3407–3414CrossRefGoogle Scholar
  29. 29.
    Pitchumani R, Heiszwolf JJ, Schmidt-Ott A, Coppens M-O (2009) Micropor Mesopor Mat 120:39–46CrossRefGoogle Scholar
  30. 30.
    Debecker DP, Hulea V, Mutin PH (2013) Appl Catal A Gen 451:192–206CrossRefGoogle Scholar
  31. 31.
    Yu C, Tian B, Zhao D (2003) Curr Opin Solid St M 7:191–197CrossRefGoogle Scholar
  32. 32.
    Araujo PZ, Luca V, Bozzano PB, Bianchi HL, Soler-Illia GJAA, Blesa M, Appl ACS (2010) Mater Inter 2:1663–1673CrossRefGoogle Scholar
  33. 33.
    Bayu Dani Nandiyanto A, Okuyama K (2011) Adv Powder Technol 22:1–19CrossRefGoogle Scholar
  34. 34.
    Tarutani N, Tokudome Y, Jobbágy M, Soler-Illia GJAA, Takahashi M (2018) J Sol-Gel Sci Technol 89:216–224CrossRefGoogle Scholar
  35. 35.
    Khan H, Rigamonti MG, Patience GS, Boffito DC (2018) Appl Catal B 226:311–323CrossRefGoogle Scholar
  36. 36.
    Tarutani N, Tokudome Y, Jobbágy M, Soler-Illia GJAA, Takahashi M (2019) J Mater Chem A 7:25290–25296CrossRefGoogle Scholar
  37. 37.
    Tang Q, Angelomé PC, Soler-Illia GJAA, Müller M (2017) Phys Chem Chem Phys 19:28249–28262CrossRefGoogle Scholar
  38. 38.
    Lu T, Wang Y, Wang Y, Zhou L, Yang X, Su Y (2017) J Mater Sci Technol 33:300–304CrossRefGoogle Scholar
  39. 39.
    Schubert U (2003) in Comprehensive Coordination Chemistry II, McCleverty, JA, Meyer, TJ, Eds. Pergamon 629–656Google Scholar
  40. 40.
    Heshmatpour F, Aghakhanpour RB (2012) Adv Powder Technol 23:80–87CrossRefGoogle Scholar
  41. 41.
    Lan L, Chen S, Caoa Y, Zhao M, Gong M, Chen Y (2015) J Colloid Interf Sci 450:404–416CrossRefGoogle Scholar
  42. 42.
    Singh P, Hegde MS (2008) J Solid State Chem 181:3248–3256CrossRefGoogle Scholar
  43. 43.
    Xiong H, Gao T, Li K, Liu Y, Ma Y, Liu J, Qiao Z-A, Song S, Dai S (2019) Adv Sci 6:1801543CrossRefGoogle Scholar
  44. 44.
    Ahonen PP, Tapper U, Kauppinen EI, Joubert JC, Deschanvres JL (2001) Mater Sci Eng A315:113–121CrossRefGoogle Scholar
  45. 45.
    Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. San Diego: AcademicCrossRefGoogle Scholar
  46. 46.
    Rodríguez-Carvajal J (1993) Phys B 192:55–69CrossRefGoogle Scholar
  47. 47.
    Boettcher SW, Fan J, Tsung C-K, Shi Q, Stucky GD (2007) Acc Chem Res 40:784–792CrossRefGoogle Scholar
  48. 48.
    Soler-Illia GJAA, Crepaldi EL, Grosso D, Sanchez C (2004) J Mater Chem 14:1879–1886CrossRefGoogle Scholar
  49. 49.
    Tang Q, Angelomé PC, Soler-Illia GJAA, Müller M (2017) Phys Chem Chem Phys 19:28249–28262CrossRefGoogle Scholar
  50. 50.
    Grosso D, Soler-Illia GJAA, Crepaldi EL, Charleux B, Sanchez C (2003) Adv Funct Mater 13:37–42CrossRefGoogle Scholar
  51. 51.
    Soler-Illia GJAA, Innocenzi P (2006) Chem Eur J 12:4478–4494CrossRefGoogle Scholar
  52. 52.
    Zelcer A, Soler-Illia GJAA (2013) J Mater Chem C 1:1359–1367CrossRefGoogle Scholar
  53. 53.
    Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. First Edition. Principles, methodology and applications. London: Academic PressCrossRefGoogle Scholar
  54. 54.
    Pan JH, Dou H, Xiong Z, Xu C, Ma J, Zhao XS (2010) J Mater Chem 20:4512–4528CrossRefGoogle Scholar
  55. 55.
    Li C, Ming T, Wang J, Wang J, Yu JC, Yu S (2014) J Catal 310:84–90CrossRefGoogle Scholar
  56. 56.
    Franceschini EA, Gomez MJ, Lacconi GI (2019) J Energy Chem 29:79–87CrossRefGoogle Scholar
  57. 57.
    Tian G, Chen Y, Zhou W, Pan K, Tian C, Huang X.-R, Fu H (2011) Cryst Eng Comm 13:2994Google Scholar
  58. 58.
    Han X, Kuang Q, Jin M, Xie Z, Zheng L (2009) J Am Chem Soc 131:3152–3153CrossRefGoogle Scholar
  59. 59.
    Wang A, Jing H (2014) Dalton Trans 43:1011–1018CrossRefGoogle Scholar
  60. 60.
    Kong M, Li Y, Chen X, Tian T, Fang P, Zheng F, Zhao X (2011) J Am Chem Soc 133:16414–16417CrossRefGoogle Scholar
  61. 61.
    Ai G, Li H, Liu S, Mo R, Zhong J (2015) Adv Funct Mater 25:5706–5713CrossRefGoogle Scholar
  62. 62.
    Kreysa G, Hakansson B, Ekdunge P (1988) Electrochim Acta 33:1351–1357CrossRefGoogle Scholar
  63. 63.
    Allen NS, Mahdjoub N, Vishnyakov V, Kelly PJ, Kriek RJ (2018) Polym Degrad Stabil 150:31–36CrossRefGoogle Scholar
  64. 64.
    Tarutani N, Tokudome Y, Jobbágy M, Soler-Illia GJAA, Tang Q, Mueller M, Takahashi M (2019) Chem Mater 31:322–330CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CIBION, CONICET, Godoy Cruz 2390 (C1425FQD)CABAArgentina
  2. 2.ECyT-UNSAM, 25 de Mayo y FranciaSan MartínArgentina
  3. 3.INFIQC-CONICET, Dto. de Fisicoquímica—Facultad de Ciencias QuímicasUniversidad Nacional de Córdoba, Ciudad UniversitariaCórdobaArgentina
  4. 4.Gerencia Química-CONICET, Centro Atómico ConstituyentesComisión Nacional de Energía AtómicaSan MartínArgentina
  5. 5.Department of Chemistry and Biomolecular Sciences and Centre for Advanced Materials Research (CAMaR)University of OttawaOttawaCanada
  6. 6.Instituto de NanosistemasUniversidad Nacional de General San MartínSan MartínArgentina
  7. 7.DQIAyQF, Fac. de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Pabellón 2 Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations