Advertisement

Multicomponent Co-based sol–gel catalysts for dry/steam reforming of methane

  • Sholpan S. ItkulovaEmail author
  • Yerzhan A. Boleubayev
  • Kirill A. Valishevskiy
Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • 5 Downloads

Abstract

The multicomponent Со–Pt–Zr/Al2O3 and Со–Pt–Zr–La/Al2O3 catalysts were prepared by the sol–gel method. The modified Pechini method was used as a sol–gel approach to synthesize a system containing Co, Pt, Zr, and La. The sol–gel materials prepared by such a manner were incorporated into alumina in order to form the catalyst granules. The physicochemical properties of the catalysts were studied by a number of methods (TEM, SEM, BET, XRD, H2-TPR). It was found that the synthesized multicomponent catalysts are highly dispersed systems composed of metal oxides and various microalloys such as the bimetallic Co–Pt and perovskite type structures—LaCoO3 and LaAlO3 having mainly the particle size < 10 nm. The catalytic behaviour of the the new sol–gel materials was tested in dry reforming (DRM), steam reforming (SRM) and combined CO2-Steam reforming of methane (bireforming, BRM) using a feed with a ratio of CO2/CH4/H2O = 0 ÷ 1/1/0 ÷ 1.5 over the temperature interval of 300–800 °C, P = 0.1 MPa, and GHSV varied within 1000–4000 h−1. The synthesized sol–gel catalysts performed the high activity, selectivity, and stability in all processes: DRM, BRM, and SRM with producing syngas with varied ratio of H2/CO depending on a feed composition. Thus, H2/CO ratio is varied within 0.9–4.4 while steam amount added to CH4-CO2 feed is grown from 0 to 1.5 volume parts. Almost complete methane conversion occurs at T = 750–800 °C. The long-term continuous testing of the Co–Pt–Zr–La/Al2O3 catalyst confirmed its stable work in methane conversion by carbon dioxide and/or steam for in total >200 h.

Highlights

  • Со–Pt–Zr(La)/Al2O3 catalysts were synthesized by the modified Pechini sol–gel method.

  • The sol-made catalyst is a highly dispersed system composed of metal oxides and microalloys – Co–Pt, LaCoO3 and LaAlO3.

  • The sol–gel made catalysts perform the high activity and selectivity in syngas production by CH4 conversion by CO2 and/or steam.

  • At relatively low temperature, 700–800 °C, the extent of CH4 conversion is 90–99% depending on a feed composition.

  • The catalyst is very stable and does not lose the activity for in total >200 h.

Keywords

Pechini sol-gel method Co-based catalysts Dry, Steam reforming of methane Bireforming of methane Syngas 

Notes

Acknowledgements

The authors wish to thank the Ministry of Education and Science of the Republic of Kazakhstan for sponsoring this research (Programme # PCF_BR05236739). Special thanks to the Laboratory of the Physico-Chemical Methods of the Catalyst Analysis of IFCE for providing the catalyst study.

References

  1. 1.
    Rezaei E, Dzuryk S (2019) Chem Eng Res Des 144:354–369CrossRefGoogle Scholar
  2. 2.
    Jang WJ, Shim JO, Kim HM, Yoo SY, Roh HS (2019) Catal Today 324:15–26CrossRefGoogle Scholar
  3. 3.
    Kaiwen L, Bin Y, Tao Z (2018) Energ Sourc B Econ Plann 13:109–115CrossRefGoogle Scholar
  4. 4.
    LeValley TL, Richard AR, Fan M (2014) Int J Hydrog Energy 39:16983–7000CrossRefGoogle Scholar
  5. 5.
    Lau CS, Tsolankis A, Wyszynski ML (2011) Int Hydrog Energy 36:397–404CrossRefGoogle Scholar
  6. 6.
    Kumar N, Shojaee M, Spivey JJ (2015) Curr Opin Chem Eng 9:8–15CrossRefGoogle Scholar
  7. 7.
    Aramouni NAK, Touma JG, Tarboush BA, Zeaiter J, Ahmad MN (2018) Renew Sust Energ Rev 82:2570–2585CrossRefGoogle Scholar
  8. 8.
    York APE, Xiao T, Green MLH, Claridge JB (2007) Catal Rev 49:511–560CrossRefGoogle Scholar
  9. 9.
    Iulianelli A, Liguori S, Wilcox J, Basile A (2016) Catal Rev 58:1–35CrossRefGoogle Scholar
  10. 10.
    Rostrup-Nielsen JR (1984) In: Andersen JR, Boudart M (eds) Catalysis, science and technology, vol 5. Springer, Berlin. Ch. 1Google Scholar
  11. 11.
    Ruckenstein E, Wang HY (2002) J Catal 205:289–293CrossRefGoogle Scholar
  12. 12.
    Park JH, Yeo S, Kang TJ, Shin HR, Heo I, Chang T-S (2018) J CO2 Util 23:10–19CrossRefGoogle Scholar
  13. 13.
    Takanabe K, Nagaoka K, Nariai K, Aika K-I (2005) J Catal 230:75–85CrossRefGoogle Scholar
  14. 14.
    Abdulrasheed A, Jalil AA, Gambo Y, Ibrahim M, Hambali HU, Shahul Hamid MY (2019) Renew Sust Energ Rev 108:175–193CrossRefGoogle Scholar
  15. 15.
    Alves HJ, Bley Jr. C, Niklevicz RR, Frigo EP, Frigo MS, Coimbra-Arau CH (2013) Int J Hydrog Energy 38:5215–20CrossRefGoogle Scholar
  16. 16.
    Rostrup-Nielsen JR, Sehested J, Norskov JK (2002) Adv Catal 47:65–139Google Scholar
  17. 17.
    Choudhary VR, Rajput AM (1996) Ind Eng Chem Res 35:3934–3939CrossRefGoogle Scholar
  18. 18.
    Gangadharan P, Kanchi KC, Lou HH (2012) Chem Eng Res Des 90:1956–1968CrossRefGoogle Scholar
  19. 19.
    Wan Daud WMA, Usman M (2015) RSC Adv 5:21945–21972CrossRefGoogle Scholar
  20. 20.
    Budiman AW, Song SH, Chang TS, Shin CH, Choi MJ (2012) Catal Surv Asia 16:183–197CrossRefGoogle Scholar
  21. 21.
    Bradford MCJ, Vannice MA (1999) Catal Rev 41:1–42CrossRefGoogle Scholar
  22. 22.
    Bian Z, Kawi S (2017) J CO2 Util 18:345–352CrossRefGoogle Scholar
  23. 23.
    Ewbank JL, Kovarik L, Kenvin CC, Sievers C (2014) Green Chem 16:885–896CrossRefGoogle Scholar
  24. 24.
    Itkulova SS, Zakumbaeva GD, Nurmakanov YY, Mukazhanova AA, Yermaganbetova AK (2014) Catal Today 228:194–198CrossRefGoogle Scholar
  25. 25.
    Ferencz Z, Baan K, Oszko A, Konya Z, Kecskes T, Erdohelyi A (2014) Catal Today 228:123–130CrossRefGoogle Scholar
  26. 26.
    Horlyck J, Lawrey C, Lovell EC, Amal R, Scott J (2018) Chem Eng J 352:572–580CrossRefGoogle Scholar
  27. 27.
    Luisetto I, Tuti S, Bartolomeo ED (2012) Int J Hydrog Energ 37:15992–99CrossRefGoogle Scholar
  28. 28.
    Hou W, Wang Y, Bai Y, Sun W, Yuan W, Zheng L, Han X, Zhou L (2017) Int J Hydrog Energ 42:16459–75CrossRefGoogle Scholar
  29. 29.
    Shin SA, Noh YS, Hong GH, Park JI, Song HT, Lee K-Y, Moon DJ (2017) J Taiwan Inst Chem E 90:25–32CrossRefGoogle Scholar
  30. 30.
    Yao L, Shi J, Hu X, Shen W, Hu C (2016) Fuel Proc Tech 144:1–7CrossRefGoogle Scholar
  31. 31.
    Koubaissy B, Pietraszek A, Roger AC, Kiennemann A (2010) Catal Today 157:436–439CrossRefGoogle Scholar
  32. 32.
    Jana P, de la Pena O’Shea VA, Coronado JM, Serrano DP (2010) Int J Hydrog Energ 35:10285–94CrossRefGoogle Scholar
  33. 33.
    Pechini M (1967) US Patent No. 3330697Google Scholar
  34. 34.
    Itkulova SS, Nurmakanov YY, Kussanova SK, Boleubayev YA (2018) Catal Today 299:272–279CrossRefGoogle Scholar
  35. 35.
    Akbar S, Hasanain SK, Azmat N, Nadeem M (2004) arXiv:cond-mat/0408480Google Scholar
  36. 36.
    Jacobs G, Ji Y, Davis BH, Cronauer D, Kropf AJ, Marshall CL (2007) Appl Catal A-Gen 333:177–191CrossRefGoogle Scholar
  37. 37.
    Asencios YJO, Rodella CB, Assaf EM (2013) Appl Catal B-Environ 132-133:1–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.D.V. Sokolsky Institute of FuelCatalysis and ElectrochemistryAlmatyKazakhstan

Personalised recommendations