Journal of Sol-Gel Science and Technology

, Volume 91, Issue 3, pp 539–551 | Cite as

Effect of metal ion addition on structural characteristics and photocatalytic activity of ordered mesoporous titania

  • Ahmed Mudhafar Mohammed
  • Michael Sebek
  • Carsten Kreyenschulte
  • Henrik Lund
  • Jabor Rabeah
  • Peter Langer
  • Jennifer Strunk
  • Norbert SteinfeldtEmail author
Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)


Ordered mesoporous titanium dioxide with different Fe, Co and Ni content (0.5 and 5 mol%) has been synthesized by co-precipitation using the evaporation–induced self-assembly (EISA) method combined with the liquid crystal templating (LCT) pathway. The structural characteristics of the prepared materials have been studied by several analytical techniques. Small-angle X-ray scattering was used to follow the effect of single synthesis steps on mesoporous ordering. The materials obtained after final calcination were characterized by scanning transmission electron microscopy, X-ray diffraction, electron paramagnetic resonance, UV/visible diffuse reflectance spectroscopy, and nitrogen adsorption-desorption. At low metal content (0.5 mol%) the presence of the doping metal has only a minor impact on the mesoporous ordering of the titania structure obtained after calcination. At higher doping metal content (5 mol%) the structural characteristics depend on the particular metal. The synthesized materials have been tested in photocatalytic degradation of phenol under UV irradiation. The influence of structural parameters such as BET surface area, pore volume, and degree of ordering on phenol degradation were insignificant. Photocatalytic activity depends mainly on the particular metal and its amount. Titania doped with 0.5 mol% Fe or Co showed improved phenol degradation compared to the pristine titania.


  • Metal-doped ordered mesoporous TiO2 powder were synthesized by sol-gel method based on EISA and LCT pathway.

  • The mesoporous ordering of TiO2 prepared was affected by the particular metal at higher doping content.

  • Photocatalytic activity of ordered mesoporous TiO2 is strongly affected by the particular doping element and its amount.


Ordered mesoporous titania Doping Photodegradation Phenol 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2019_5052_MOESM1_ESM.pdf (2.2 mb)
Supplementary Information


  1. 1.
    Peral J, Domenech X, Ollis DF (1997) Heterogeneous photocatalysis for purification, decontamination and deodorization of air. J Chem Technol Biotechnol 70(2):117–140CrossRefGoogle Scholar
  2. 2.
    Tayade RJ, Kulkarni RG, Jasra RV (2006) Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind Eng Chem Res 45(15):5231–5238CrossRefGoogle Scholar
  3. 3.
    Dzik P, Vesely M, Kete M, Pavlica E, Štangar UkLi, Neumann-Spallart M (2015) Properties and application perspective of hybrid titania-silica patterns fabricated by inkjet printing. ACS App Mat Int 7(30):16177–16190CrossRefGoogle Scholar
  4. 4.
    Zhao W-N, Liu Z-P (2014) Mechanism and active site of photocatalytic water splitting on titania in aqueous surroundings. Chem Sci 5(6):2256–2264CrossRefGoogle Scholar
  5. 5.
    Elgh B, Yuan N, Cho HS, Magerl D, Philipp M, Roth SV, Yoon KB, Müller-Buschbaum P, Terasaki O, Palmqvist AE (2014) Controlling morphology, mesoporosity, crystallinity, and photocatalytic activity of ordered mesoporous TiO2 films prepared at low temperature. APL Materials 2(11):113313CrossRefGoogle Scholar
  6. 6.
    Wei J, Sun Z, Luo W, Li Y, Elzatahry AA, Al-Enizi AM, Deng Y, Zhao D (2017) New insight into the synthesis of large-pore ordered mesoporous materials. J Am Chem Soc 139(5):1706–1713CrossRefGoogle Scholar
  7. 7.
    Zhang R, Elzatahry AA, Al-Deyab SS, Zhao D (2012) Mesoporous titania: from synthesis to application. Nano Today 7(4):344–366CrossRefGoogle Scholar
  8. 8.
    Bonelli B, Esposito S, Freyria FS (2017) In: Janus M (Ed.) Titanium dioxide. IntechOpen,,
  9. 9.
    Ismail AA, Bahnemann DW (2011) Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. J Mater Chem 21(32):11686–11707CrossRefGoogle Scholar
  10. 10.
    Zimny K, Ghanbaja J, Carteret C, Stébé M-J, Blin J-L (2010) Highly ordered mesoporous titania with semi crystalline framework templated by large or small nonionic surfactants. New J Chem 34(10):2113–2117CrossRefGoogle Scholar
  11. 11.
    Zimny K, Roques-Carmes T, Carteret C, Stébé M, Blin J (2012) Synthesis and photoactivity of ordered mesoporous titania with a semicrystalline framework. J Phys Chem C 116(11):6585–6594CrossRefGoogle Scholar
  12. 12.
    Chen L, Li Y-j, Peng X, Li Z-S, Zeng M-X (2014) Preparation and improved photocatalytic activity of ordered mesoporous TiO2 by evaporation induced self-assembly technique using liquid crystal as template. T Nonferr Metal Soc 24(4):1072–1078CrossRefGoogle Scholar
  13. 13.
    Hossain MK, Koirala AR, Akhtar US, Song MK, Yoon KB (2015) First synthesis of highly crystalline, hexagonally ordered, uniformly mesoporous TiO2–B and its optical and photocatalytic properties. Chem Mater 27(19):6550–6557CrossRefGoogle Scholar
  14. 14.
    Ahmed S, Rasul M, Martens WN, Brown R, Hashib M (2011) Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water Air Soil Pollut 215(1-4):3–29CrossRefGoogle Scholar
  15. 15.
    Zhou W, Fu H (2013) Mesoporous TiO2: preparation, doping, and as a composite for photocatalysis. ChemCatChem 5(4):885–894CrossRefGoogle Scholar
  16. 16.
    Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52(10):3581–3599CrossRefGoogle Scholar
  17. 17.
    Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW (2017) Application of doped photocatalysts for organic pollutant degradation−a review. J Environ Manage 198:78–94CrossRefGoogle Scholar
  18. 18.
    Li W, Wu Z, Wang J, Elzatahry AA, Zhao D (2013) A perspective on mesoporous TiO2 materials. Chem Mater 26(1):287–298CrossRefGoogle Scholar
  19. 19.
    Wei X, Wang H, Zhu G, Chen J, Zhu L (2013) Iron-doped TiO2 nanotubes with high photocatalytic activity under visible light synthesized by an ultrasonic-assisted sol-hydrothermal method. Ceram Int 39(4):4009–4016CrossRefGoogle Scholar
  20. 20.
    Rashad M, Elsayed E, Al-Kotb M, Shalan A (2013) The structural, optical, magnetic and photocatalytic properties of transition metal ions doped TiO2 nanoparticles. J Alloys Compd 581:71–78CrossRefGoogle Scholar
  21. 21.
    Soo CW, Juan JC, Lai CW, Hamid SBA, Yusop RM (2016) Fe-doped mesoporous anatase-brookite titania in the solar-light-induced photodegradation of Reactive Black 5 dye. J Taiwan Inst Chem Eng 68:153–161CrossRefGoogle Scholar
  22. 22.
    Zhou M, Yu J, Cheng B (2006) Effects of Fe-doping on the photocatalytic activity of mesoporous TiO2 powders prepared by an ultrasonic method. J Hazard Mater 137(3):1838–1847CrossRefGoogle Scholar
  23. 23.
    Torres-Luna JA, Sanabria NR, Carriazo JG (2016) Powders of iron (III)-doped titanium dioxide obtained by direct way from a natural ilmenite. Powder Technol 302:254–260CrossRefGoogle Scholar
  24. 24.
    Zhou M, Yu J, Cheng B, Yu H (2005) Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Mater Chem Phys 93(1):159–163CrossRefGoogle Scholar
  25. 25.
    Jing D, Zhang Y, Guo L (2005) Study on the synthesis of Ni-doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution. Chem Phys Lett 415(1):74–78CrossRefGoogle Scholar
  26. 26.
    Yin JS, Wang ZL (1999) Template-assisted self-assembly and cobalt doping of ordered mesoporous titania nanostructures. Adv Mater 11(6):469–472CrossRefGoogle Scholar
  27. 27.
    Wang T, Meng X, Liu G, Chang K, Li P, Kang Q, Liu L, Li M, Ouyang S, Ye J (2015) In situ synthesis of ordered mesoporous Co-doped TiO2 and its enhanced photocatalytic activity and selectivity for the reduction of CO2. J Mater Chem A 3(18):9491–9501CrossRefGoogle Scholar
  28. 28.
    Li Z, Haidry AA, Gao B, Wang T, Yao Z (2017) The effect of Co-doping on the humidity sensing properties of ordered mesoporous TiO2. Appl Surf Sci 412:638–647CrossRefGoogle Scholar
  29. 29.
    Wang Y, Jiang Z-H, Yang F-J (2006) Effect of Fe-doping on the pore structure of mesoporous titania. Mater Sci Eng B 134(1):76–79CrossRefGoogle Scholar
  30. 30.
    Yuan X-L, Zhang J-L, Anpo M, He D-N (2010) Synthesis of Fe3+ doped ordered mesoporous TiO2 with enhanced visible light photocatalytic activity and highly crystallized anatase wall. Res Chem Intermed 36(1):83–93CrossRefGoogle Scholar
  31. 31.
    Sajjad S, Leghari SA, Chen F, Zhang J (2010) Bismuth‐doped ordered mesoporous TiO2: visible‐light catalyst for simultaneous degradation of phenol and chromium. Chem Eur J 16(46):13795–13804CrossRefGoogle Scholar
  32. 32.
    Assaker K, Carteret C, Roques-Carmes T, Ghanbaja J, Stébé M-J, Blin J-L (2014) Influence of Zn ion addition on the properties of ordered mesoporous TiO2. New J Chem 38(5):2081–2089CrossRefGoogle Scholar
  33. 33.
    Sing KS, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57(4):603–619CrossRefGoogle Scholar
  34. 34.
    Dimitrov M, Ivanova R, Velinov N, Henych J, Slušná M, Štengl V, Tolasz J, Mitov I, Tsoncheva T (2016) Mesoporous TiO2 powders as host matrices for iron nanoparticles. Effect of the preparation procedure and doping with Hf. Nano Struct Nano Obj 7:56–63CrossRefGoogle Scholar
  35. 35.
    Karnjanakom S, Bayu A, Hao X, Kongparakul S, Samart C, Abudula A, Guan G (2016) Selectively catalytic upgrading of bio-oil to aromatic hydrocarbons over Zn, Ce or Ni-doped mesoporous rod-like alumina catalysts. J Mol Catal A Chem 421:235–244CrossRefGoogle Scholar
  36. 36.
    Pecchi G, Reyes P, Lopez T, Gomez R, Moreno A, Fierro J, Martínez-Arias A (2003) Catalytic combustion of methane on Fe-TiO2 catalysts prepared by sol-gel method. J Sol Gel Sci Technol 27(2):205–214CrossRefGoogle Scholar
  37. 37.
    Tong T, Zhang J, Tian B, Chen F, He D (2008) Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J Hazard Mater 155(3):572–579CrossRefGoogle Scholar
  38. 38.
    Li X, Yue P-L, Kutal C (2003) Synthesis and photocatalytic oxidation properties of iron doped titanium dioxide nanosemiconductor particles. New J Chem 27(8):1264–1269CrossRefGoogle Scholar
  39. 39.
    Graetzel M, Howe RF (1990) Electron paramagnetic resonance studies of doped titanium dioxide colloids. J Phys Chem 94(6):2566–2572CrossRefGoogle Scholar
  40. 40.
    Janes R, Knightley L, Harding C (2004) Structural and spectroscopic studies of iron (III) doped titania powders prepared by sol-gel synthesis and hydrothermal processing. Dyes Pigments 62(3):199–212CrossRefGoogle Scholar
  41. 41.
    Adán C, Bahamonde A, Fernández-García M, Martínez-Arias A (2007) Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation. Appl Catal, B 72(1):11–17CrossRefGoogle Scholar
  42. 42.
    Zuas O, Budiman H (2013) Synthesis of nanostructured copper-doped titania and its properties. Nano Micro Lett 5(1):26–33CrossRefGoogle Scholar
  43. 43.
    Wang Q, Jin R, Zhang M, Gao S (2017) Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance. J Alloys Compd 690:139–144CrossRefGoogle Scholar
  44. 44.
    Zhang D (2011) Chemical synthesis of Ni/TiO2 nanophotocatalyst for UV/visible light assisted degradation of organic dye in aqueous solution. J Sol Gel Sci Technol 58(1):312–318CrossRefGoogle Scholar
  45. 45.
    Zhu J, Chen F, Zhang J, Chen H, Anpo M (2006) Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J Photochem Photobiol A 180(1):196–204CrossRefGoogle Scholar
  46. 46.
    Santara B, Pal B, Giri P (2011) Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. J Appl Phys 110(11):114322CrossRefGoogle Scholar
  47. 47.
    Smirnova N, Petrik I, Vorobets V, Kolbasov G, Eremenko A (2017) Sol-gel synthesis, photo and electrocatalytic properties of mesoporous TiO2 modified with transition metal ions. Nanoscale Res Lett 12(1):239CrossRefGoogle Scholar
  48. 48.
    López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol Gel Sci Technol 61(1):1–7CrossRefGoogle Scholar
  49. 49.
    Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J Phys Chem Solids 63(10):1909–1920CrossRefGoogle Scholar
  50. 50.
    Liu G, Wang L, Yang HG, Cheng H-M, Lu GQM (2010) Titania-based photocatalysts—crystal growth, doping and heterostructuring. J Mater Chem 20(5):831–843CrossRefGoogle Scholar
  51. 51.
    Li W, Liu C, Zhou Y, Bai Y, Feng X, Yang Z, Lu L, Lu X, Chan K-Y (2008) Enhanced photocatalytic activity in anatase/TiO2 (B) core−shell nanofiber. J Phys Chem C 112(51):20539–20545CrossRefGoogle Scholar
  52. 52.
    Zheng Z, Liu H, Ye J, Zhao J, Waclawik ER, Zhu H (2010) Structure and contribution to photocatalytic activity of the interfaces in nanofibers with mixed anatase and TiO2 (B) phases. J Mol Catal A Chem 316(1-2):75–82CrossRefGoogle Scholar
  53. 53.
    Grabowska E, Reszczyńska J, Zaleska A (2012) Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review. Water Res 46(17):5453–5471CrossRefGoogle Scholar
  54. 54.
    Teh CM, Mohamed AR (2011) Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: a review. J Alloys Compd 509(5):1648–1660CrossRefGoogle Scholar
  55. 55.
    Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98(51):13669–13679CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Leibniz-Institut für Katalyse e.V.RostockGermany
  2. 2.Department of Chemistry-College of Education for GirlsUniversity of MosulMosulIraq
  3. 3.Institute of ChemistryUniversity of RostockRostockGermany

Personalised recommendations