Advertisement

Gas-sensing properties of nanostructured TiO2–xZrO2 thin films obtained by the sol–gel method

  • Artem S. MokrushinEmail author
  • Elizaveta P. Simonenko
  • Nikolay P. Simonenko
  • Kirill A. Bukunov
  • Philipp Yu. Gorobtsov
  • Vladimir G. Sevastyanov
  • Nikolay T. Kuznetsov
Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • 19 Downloads

Abstract

TiO2xZrO2 films of various phase compositions were synthesized by sol–gel technique. According to the Raman spectroscopy, data films with x = 0–20% possess an anatase crystal structure, with x = 40%, exhibiting zirconium titanate ZrTiO4 structure and a film with x = 50% is amorphous. Anatase-structured films demonstrate a high and reproducible response to oxygen in a wide range of concentrations (1–20%) under temperatures of 400–450 °C. The film with 10% ZrO2 exhibits the best response, which is in particular attributed to the lower particle size of the coating compared with that of other films. It was shown that the response to oxygen upon increasing the operating temperature from 400 to 450 °C diminishes much less in the case of titanium dioxide doped with 10% ZrO2, than in the case of pure TiO2. Introduction of the Zr4+ ion into the anatase crystal structure also decreases the baseline drift. It was shown that thin films of TiO2xZrO2 (with x = 0 and 10%), obtained in this study, possess a good selectivity to oxygen; the response to other analyte gases (H2, CH4, and CO) does not exceed 1.6 and 1.4 under the temperatures of 400 and 450 °C, respectively.

TiO2xZrO2 films of various phase composition were synthesized by sol–gel technique. According to the Raman spectroscopy data films with x = 0–20% possess an anatase crystal structure, with x = 40% exhibit zirconium titanate structure and film with x = 50% is amorphous. Anatase-structured films demonstrate high and reproducible response to oxygen in the wide range of concentrations (1–20%) under temperatures of 400–450 °C.

Highlights

  • TiO2xZrO2 films and powders were synthesized by sol–gel technique.

  • TiO2xZrO2 (x = 0–20 mol.%) possess anatase structure.

  • A film with x = 40% has zirconium titanate structure, a film with x = 50% is amorphous.

  • Anatase-structured films exhibit a high reproducible response to О2.

  • The film with x = 10% possesses the best response to O2.

Keywords

Sol–gel TiO2 Zirconium titanate Gas sensor Thin films Raman spectroscopy 

Notes

Acknowledgements

This work was supported by IGIC RAS state assignment. The study has been funded by the Russian Foundation for Basic Research [project nos. 18-03-00992 (a study to the gas-sensing properties) and 18-33-20248 (development of precursors obtaining functional ink for ink-jet printing)].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10971_2019_4979_MOESM1_ESM.docx (343 kb)
Supplementary Information

References

  1. 1.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem Rev 107:2891–2959.  https://doi.org/10.1021/cr0500535 CrossRefGoogle Scholar
  2. 2.
    Anitha VC, Banerjee AN, Joo SW (2015) Recent developments in TiO2 as n- and p-type transparent semiconductors: synthesis, modification, properties, and energy-related applications. J Mater Sci 50:7495–7536.  https://doi.org/10.1007/s10853-015-9303-7 CrossRefGoogle Scholar
  3. 3.
    Hamilton JWJ, Entezari MH, Byrne JA et al. (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349.  https://doi.org/10.1016/j.apcatb.2012.05.036 CrossRefGoogle Scholar
  4. 4.
    Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv Mater 18:2807–2824.  https://doi.org/10.1002/adma.200502696 CrossRefGoogle Scholar
  5. 5.
    Magdysyuk OV, Adams F, Liermann HP, Spanopoulos I, Trikalitis PN, Hirscher M, Morris RE, Duncan MJ, McCormick LJ (2016) Understanding the adsorption mechanism of noble gases Kr and Xe in CPO-27-Ni, CPO-27-Mg, and ZIF-8. Int J Psychosoc Rehabil 20:1–6.  https://doi.org/10.1039/c8tb00149a Google Scholar
  6. 6.
    Wang X, Zhao Y, Mølhave K, Sun H (2017) Engineering the surface/interface structures of titanium dioxide micro and nano architectures towards environmental and electrochemical applications. Nanomaterials 7:382.  https://doi.org/10.3390/nano7110382 CrossRefGoogle Scholar
  7. 7.
    Tropis C, Rouhani MD, Landa G et al. (2011) A computational chemist approach to gas sensors: Modeling the response of SnO2 to CO, O2, and H2O gases. J Comput Chem 33:247–258.  https://doi.org/10.1002/jcc.21959 Google Scholar
  8. 8.
    Thong LV, Hoa ND, Le DTT et al. (2010) On-chip fabrication of SnO2-nanowire gas sensor: The effect of growth time on sensor performance. Sensors Actuators, B Chem 146:361–367.  https://doi.org/10.1016/j.snb.2010.02.054 CrossRefGoogle Scholar
  9. 9.
    Lev O, Mokrushin AS, Medvedev AG et al. (2017) H2O2 induced formation of graded composition sodium-doped tin dioxide and template-free synthesis of yolk–shell SnO2 particles and their sensing application. Dalt Trans 46:16171–16179.  https://doi.org/10.1039/c7dt03104a CrossRefGoogle Scholar
  10. 10.
    Hongsith N, Wongrat E, Kerdcharoen T, Choopun S (2010) Sensor response formula for sensor based on ZnO nanostructures. Sensors Actuators, B Chem 144:67–72.  https://doi.org/10.1016/j.snb.2009.10.037 CrossRefGoogle Scholar
  11. 11.
    Kim W, Choi M, Yong K (2015) Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties. Sensors Actuators, B Chem 209:989–996.  https://doi.org/10.1016/j.snb.2014.12.072 CrossRefGoogle Scholar
  12. 12.
    Kim HJ, Lee JH (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sensors Actuators, B Chem 192:607–627.  https://doi.org/10.1016/j.snb.2013.11.005 CrossRefGoogle Scholar
  13. 13.
    Persson P, Bergström R, Lunell S (2002) Quantum chemical study of photoinjection processes in dye-sensitized TiO2 nanoparticles. J Phys Chem B 104:10348–10351.  https://doi.org/10.1021/jp002550p CrossRefGoogle Scholar
  14. 14.
    Samsudin EM, Abd Hamid SB (2017) Effect of band gap engineering in anionic-doped TiO2 photocatalyst. Appl Surf Sci 391:326–336.  https://doi.org/10.1016/j.apsusc.2016.07.007 CrossRefGoogle Scholar
  15. 15.
    Zhang M, Ning T, Zhang S et al. (2014) Response time and mechanism of Pd modified TiO2 gas sensor. Mater Sci Semicond Process 17:149–154.  https://doi.org/10.1016/j.mssp.2013.09.014 CrossRefGoogle Scholar
  16. 16.
    Neri G, Santangelo S, Donato N et al. (2011) Hydrogen sensing characteristics of Pt/TiO2/MWCNTs composites. Int J Hydrogen Energy 37:1842–1851.  https://doi.org/10.1016/j.ijhydene.2011.10.017 Google Scholar
  17. 17.
    Hazra SK, Tripathy SR, Alessandri I et al. (2006) Characterizations of porous titania thin films produced by electrochemical etching. Mater Sci Eng B Solid-State Mater Adv Technol 131:135–141.  https://doi.org/10.1016/j.mseb.2006.04.004 CrossRefGoogle Scholar
  18. 18.
    Kim I-D, Lee S-J, Zyung T et al. (2010) Pd-doped TiO2 nanofiber networks for gas sensor applications. Sensors Actuators B Chem 149:301–305.  https://doi.org/10.1016/j.snb.2010.06.033 CrossRefGoogle Scholar
  19. 19.
    Muthukrishnan K, Vanaraja M, Boomadevi S et al. (2015) Highly selective acetaldehyde sensor using sol–gel dip coated nano crystalline TiO2 thin film. J Mater Sci, Mater Electron 26:5135–5139.  https://doi.org/10.1007/s10854-015-3041-0 CrossRefGoogle Scholar
  20. 20.
    Yin L, Zhang L, Lun N et al. (2010) Large scale synthesis and gas-sensing properties of anatase TiO2 three-dimensional hierarchical nanostructures. Langmuir 26:12841–12848.  https://doi.org/10.1021/la100910u CrossRefGoogle Scholar
  21. 21.
    Hyun SK, Choi S, Sun G-J et al. (2017) Prominent gas sensing performance of TiO2-core/NiO-shell nanorod sensors. J Nanosci Nanotechnol 17:4099–4102.  https://doi.org/10.1166/jnn.2017.13409 CrossRefGoogle Scholar
  22. 22.
    Yang F, Zhu J, Zou X et al. (2018) Three-dimensional TiO2/SiO2 composite aerogel films via atomic layer deposition with enhanced H2S gas sensing performance. Ceram Int 44:1078–1085.  https://doi.org/10.1016/j.ceramint.2017.10.052 CrossRefGoogle Scholar
  23. 23.
    Ye Z, Tai H, Xie T et al. (2016) Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide. Sensors Actuators, B Chem 223:149–156.  https://doi.org/10.1016/j.snb.2015.09.102 CrossRefGoogle Scholar
  24. 24.
    Mor GK, Carvalho MA, Varghese OK et al. (2004) A room temperature TiO2 nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J Mater Res 19:628–634CrossRefGoogle Scholar
  25. 25.
    Liu L, Li X, Dutta PK, Wang J (2013) Room temperature impedance spectroscopy-based sensing of formaldehyde with porous TiO2 under UV illumination. Sensors Actuators, B Chem 185:1–9.  https://doi.org/10.1016/j.snb.2013.04.090 CrossRefGoogle Scholar
  26. 26.
    Chen CY, Chang KH, Chiang HY, Shih SJ (2014) Preparation of a porous ceria coating for a resistive oxygen sensor. Sensors Actuators, B Chem 204:31–41.  https://doi.org/10.1016/j.snb.2014.07.053 CrossRefGoogle Scholar
  27. 27.
    Morante JR, Andreu T, Ghom SA et al. (2009) Oxygen sensing with mesoporous ceria–zirconia solid solutions. Sensors Actuators B Chem 140:216–221.  https://doi.org/10.1016/j.snb.2009.02.078 CrossRefGoogle Scholar
  28. 28.
    Beie HJ, Gnörich A (1991) Oxygen gas sensors based on CeO2 thick and thin films. Sensors Actuators B Chem 4:393–399.  https://doi.org/10.1016/0925-4005(91)80141-6 CrossRefGoogle Scholar
  29. 29.
    Trinchi A, Li YX, Wlodarski W et al. (2003) Investigation of sol-gel prepared CeO2-TiO2 thin films for oxygen gas sensing. Sensors Actuators, B Chem 95:145–150.  https://doi.org/10.1016/S0925-4005(03)00424-6 CrossRefGoogle Scholar
  30. 30.
    Liu Y, Zhou B, Cai W et al. (2008) Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand. Adv Mater 20:1044–1049.  https://doi.org/10.1002/adma.200701619 CrossRefGoogle Scholar
  31. 31.
    Cabeza GF, Schipani F, Garetto TF et al. (2017) N-doping effects on the oxygen sensing of TiO2 films. J Electroceramics 40:72–77.  https://doi.org/10.1007/s10832-017-0100-3 Google Scholar
  32. 32.
    Moseley PT (1992) Materials selection for semiconductor gas sensors. Sensors Actuators B Chem 6:149–156.  https://doi.org/10.1016/0925-4005(92)80047-2 CrossRefGoogle Scholar
  33. 33.
    Ramamoorthy R, Dutta PK, Akbar SA (2003) Oxygen sensors: Materials, methods, designs. J Mater Sci 38:4271–4282.  https://doi.org/10.1023/A:1026370729205 CrossRefGoogle Scholar
  34. 34.
    Wang H, Chen L, Wang J et al. (2014) A micro oxygen sensor based on a nano sol-gel TiO2 thin film. Sensors (Switzerland) 14:16423–16433.  https://doi.org/10.3390/s140916423 CrossRefGoogle Scholar
  35. 35.
    Park JY, Choi SW, Lee JW et al. (2009) Synthesis and gas sensing properties of TiO2-ZnO core-shell nanofibers. J Am Ceram Soc 92:2551–2554.  https://doi.org/10.1111/j.1551-2916.2009.03270.x CrossRefGoogle Scholar
  36. 36.
    Mei Z, Xidong W, Fuming W, Wenchao L (2003) Oxygen sensitivity of nano-CeO2 coating TiO2 materials. Sensors Actuators, B Chem 92:167–170.  https://doi.org/10.1016/S0925-4005(03)00259-4 CrossRefGoogle Scholar
  37. 37.
    Zhuiykov S, Wlodarski W, Li Y (2001) Nanocrystalline V2O5-TiO2 thin-films for oxygen sensing prepared by sol-gel process. Sensors Actuators, B Chem 77:484–490.  https://doi.org/10.1016/S0925-4005(01)00739-0 CrossRefGoogle Scholar
  38. 38.
    Dolgov L, Eltermann M, Lange S et al. (2017) Au/SiO2 nanoparticles in TiO2:Sm3+ films for improved fluorescence sensing of oxygen. J Mater Chem C 5:11958–11964.  https://doi.org/10.1039/c7tc03704j CrossRefGoogle Scholar
  39. 39.
    Mokrushin AS, Popov VS, Simonenko NP et al. (2017) Thin films of the composition 8% Y2O3–92% ZrO2 (8YSZ) as gas-sensing materials for oxygen detection. Russ J Inorg Chem 62:695–701.  https://doi.org/10.1134/s0036023617060213 CrossRefGoogle Scholar
  40. 40.
    Mohammadi MR, Fray DJ (2011) Synthesis and characterisation of nanosized TiO2-ZrO2 binary system prepared by an aqueous sol-gel process: Physical and sensing properties. Sensors Actuators, B Chem 155:568–576.  https://doi.org/10.1016/j.snb.2011.01.009 CrossRefGoogle Scholar
  41. 41.
    Mortazavi Y, Elyassi B, Rajabbeigi N et al. (2005) Oxygen sensor with solid-state CeO2–ZrO2–TiO2 reference. Sensors Actuators B Chem 108:341–345.  https://doi.org/10.1016/j.snb.2004.12.079 CrossRefGoogle Scholar
  42. 42.
    Kashiwagi K, Shimizu K, Nishiyama H et al. (2007) Impedancemetric gas sensor based on Pt and WO3 co-loaded TiO2 and ZrO2 as total NOx sensing materials. Sensors Actuators B Chem 130:707–712.  https://doi.org/10.1016/j.snb.2007.10.032 Google Scholar
  43. 43.
    Hsu CH, Tseng CF, Lai CH et al. (2010) Structural and electrical characteristics of ZrO2-TiO2 thin films by sol-gel method. Mater Sci Eng B Solid-State Mater Adv Technol 175:181–184.  https://doi.org/10.1016/j.mseb.2010.07.010 CrossRefGoogle Scholar
  44. 44.
    Salahinejad E, Hadianfard MJ, MacDonald DD et al. (2013) Multilayer zirconium titanate thin films prepared by a sol-gel deposition method. Ceram Int 39:1271–1276.  https://doi.org/10.1016/j.ceramint.2012.07.058 CrossRefGoogle Scholar
  45. 45.
    Anitha VS, Sujatha Lekshmy S, Joy K (2017) Effect of annealing on the structural, optical, electrical and photocatalytic activity of ZrO2–TiO2 nanocomposite thin films prepared by sol–gel dip coating technique. J Mater Sci, Mater Electron 28:10541–10554.  https://doi.org/10.1007/s10854-017-6828-3 CrossRefGoogle Scholar
  46. 46.
    Park Y, Kim HG (1997) Electric-field-induced commensurate phase in ZrTiO4. Appl Phys Lett 70:1971–1973.  https://doi.org/10.1063/1.118795 CrossRefGoogle Scholar
  47. 47.
    Victor P, Krupanidhi SB (2005) Impact of microstructure on electrical characteristics of laser ablation grown ZrTiO4 thin films on Si substrate. J Phys D: Appl Phys 38:41–50.  https://doi.org/10.1088/0022-3727/38/1/009 CrossRefGoogle Scholar
  48. 48.
    Rouhani P, Salahinejad E, Kaul R et al. (2013) Nanostructured zirconium titanate fibers prepared by particulate sol-gel and cellulose templating techniques. J Alloys Compd 568:102–105.  https://doi.org/10.1016/j.jallcom.2013.03.142 CrossRefGoogle Scholar
  49. 49.
    Gajović A, Šantić A, Djerdj I et al. (2009) Structure and electrical conductivity of porous zirconium titanate ceramics produced by mechanochemical treatment and sintering. J Alloys Compd 479:525–531.  https://doi.org/10.1016/j.jallcom.2008.12.123 CrossRefGoogle Scholar
  50. 50.
    López-López E, Baudín C, Moreno R et al. (2012) Structural characterization of bulk ZrTiO4 and its potential for thermal shock applications. J Eur Ceram Soc 32:299–306.  https://doi.org/10.1016/j.jeurceramsoc.2011.08.004 CrossRefGoogle Scholar
  51. 51.
    Kim CH, Lee M (2002) Zirconium titanate thin film prepared by surface sol-gel process and effects of thickness on dielectric property. Bull Korean Chem Soc 23:741–744.  https://doi.org/10.5012/bkcs.2002.23.5.741 CrossRefGoogle Scholar
  52. 52.
    Biju KP, Jain MK (2008) Sol-gel derived TiO2:ZrO2 multilayer thin films for humidity sensing application. Sensors Actuators, B Chem 128:407–413.  https://doi.org/10.1016/j.snb.2007.06.029 CrossRefGoogle Scholar
  53. 53.
    Ansari ZA, Ko TG, Oh JH (2004) Humidity sensing behavior of thick films of strontium-doped lead-zirconium-titanate. Surf Coatings Technol 179:182–187.  https://doi.org/10.1016/S0257-8972(03)00820-X CrossRefGoogle Scholar
  54. 54.
    Sevastyanov VG, Simonenko EP, Simonenko NP et al. (2018) Sol-gel made titanium dioxide nanostructured thin films as gas-sensing materials for the detection of oxygen. Mendeleev Commun 28:164–166.  https://doi.org/10.1016/j.mencom.2018.03.018 CrossRefGoogle Scholar
  55. 55.
    Castillero P, Roales J, Lopes-Costa T et al. (2017) Optical gas sensing of ammonia and amines based on protonated porphyrin/TiO2 composite thin films. Sensors (Switzerland) 17:1–14.  https://doi.org/10.3390/s17010024 Google Scholar
  56. 56.
    Harrison CJ, Rashid SSAAH, Kandjani AE et al. (2018) Soot template TiO2 fractals as a photoactive gas sensor for acetone detection. Sensors Actuators B Chem 275:215–222.  https://doi.org/10.1016/j.snb.2018.08.059 CrossRefGoogle Scholar
  57. 57.
    Reddy YAK, Shin YB, Kang IK, Lee HC (2016) Substrate temperature dependent bolometric properties of TiO2−x films for infrared image sensor applications. Ceram Int 42:17123–17127.  https://doi.org/10.1016/j.ceramint.2016.07.225 CrossRefGoogle Scholar
  58. 58.
    Mokrushin AS, Simonenko EP, Simonenko NP et al. (2019) Oxygen detection using nanostructured TiO2thin films obtained by the molecular layering method. Appl Surf Sci 463:197–202.  https://doi.org/10.1016/j.apsusc.2018.08.208 CrossRefGoogle Scholar
  59. 59.
    Sao-Joao S, Viricelle JP, Kassem O et al. (2018) Synthesis and inkjet printing of sol–gel derived tin oxide ink for flexible gas sensing application. J Mater Sci 53:12750–12761.  https://doi.org/10.1007/s10853-018-2577-9 CrossRefGoogle Scholar
  60. 60.
    Kemmitt T, Daglish M (2002) Decomposition of coordinated acetylacetonate in lead zirconate titanate (PZT) precursor solutions. Inorg Chem 37:2063–2065.  https://doi.org/10.1021/ic971131c CrossRefGoogle Scholar
  61. 61.
    Mokrushin AS, Simonenko EP, Simonenko NP et al. (2019) Gas-sensing properties of nanostructured CeO2−xZrO2 thin films obtained by the sol-gel method. J Alloys Compd 773:1023–1032.  https://doi.org/10.1016/j.jallcom.2018.09.274 CrossRefGoogle Scholar
  62. 62.
    Mokrushin AS, Simonenko EP, Simonenko NP et al. (2018) Tin acetylacetonate as a precursor for producing gas-sensing SnO2 thin films. Russ J Inorg Chem 63:851–860.  https://doi.org/10.1134/s0036023618070197 CrossRefGoogle Scholar
  63. 63.
    Maeder T, Simonenko NP, Vlasov IS et al. (2017) Synthesis of nanocrystalline ZnO by the thermal decomposition of [Zn(H2O)(O2C5H7)2] in isoamyl alcohol. Russ J Inorg Chem 62:1415–1425.  https://doi.org/10.1134/s0036023617110195 CrossRefGoogle Scholar
  64. 64.
    Le YK, Chen ZH, Bai LH et al. (2007) Phase transformation and particle growth in nanocrystalline anatase TiO2 films analyzed by X-ray diffraction and Raman spectroscopy. Surf Sci 601:4390–4394.  https://doi.org/10.1016/j.susc.2007.04.127 CrossRefGoogle Scholar
  65. 65.
    Manriquez ME, Picquart M, Bokhimi X et al (2008) X-ray diffraction, and Raman scattering study of nanostructured ZrO2-TiO2 oxides prepared by sol-gel. J Nanosci Nanotechnol 8:1–7.  https://doi.org/10.1166/jnn.2008.041 CrossRefGoogle Scholar
  66. 66.
    Roy A, Sood AK (1995) Phonons and fractons in sol-gel alumina: Raman study. Pramana J Phys 44:201–209.  https://doi.org/10.1007/BF02848471 CrossRefGoogle Scholar
  67. 67.
    Yin Z, Zhang WF, He YL et al. (2002) Raman scattering study on anatase TiO2 nanocrystals. J Phys D: Appl Phys 33:912–916.  https://doi.org/10.1088/0022-3727/33/8/305 Google Scholar
  68. 68.
    Frank O, Zukalova M, Laskova B et al. (2012) Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18). Phys Chem Chem Phys 14:14567–14572.  https://doi.org/10.1039/c2cp42763j CrossRefGoogle Scholar
  69. 69.
    Kim YK, Jang HM (2001) Lattice contraction and cation ordering of ZrTiO4 in the normal-to-incommensurate phase transition. J Appl Phys 89:6349–6355.  https://doi.org/10.1063/1.1368871 CrossRefGoogle Scholar
  70. 70.
    Do DB, Oanh LM, Van Minh N et al. (2016) Formation of crystal structure of zirconium titanate ZrTiO4 powders prepared by sol–gel method. J Electron Mater 45:2553–2558.  https://doi.org/10.1007/s11664-016-4412-x CrossRefGoogle Scholar
  71. 71.
    Liu J, Li X, Zhao Q, Zhang D (2012) Influence of Structural and surface characteristics of Ti1-xZrxO2 nanoparticles on the photocatalytic degradation of methylcyclohexane in the gas phase María. Catal Sci Technol 2:1711–1718.  https://doi.org/10.1039/c2cy20121f CrossRefGoogle Scholar
  72. 72.
    Shannon RD, Prewitt CT (1968) Effective ionic radii in oxides and fluorides. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 25:925–946.  https://doi.org/10.1107/s0567740869003220 CrossRefGoogle Scholar
  73. 73.
    Landmann M, Rauls E, Schmidt WG (2012) The electronic structure and optical response of rutile, anatase and brookite TiO2. J Phys Condens Matter 24.  https://doi.org/10.1088/0953-8984/24/19/195503
  74. 74.
    Ishizawa N, Miyata T, Minato I et al. (1980) A Structural Investigation of α-Al2O3 at 2170 K. Acta Cryst B: 228–230.  https://doi.org/10.1107/S0567740880002981
  75. 75.
    Mieritz DG, Renaud A, Seo DK (2016) Unusual changes in electronic band-edge energies of the nanostructured transparent n-type semiconductor Zr-doped anatase TiO2 (Ti1-xZrxO2; x < 0.3). Inorg Chem 55:6574–6585.  https://doi.org/10.1021/acs.inorgchem.6b00712 CrossRefGoogle Scholar
  76. 76.
    Li M, Chen Y (1996) An investigation of response time of TiO2 thin-film oxygen sensors. Sensors Actuators, B Chem 32:83–85.  https://doi.org/10.1016/0925-4005(96)80113-4 CrossRefGoogle Scholar
  77. 77.
    Lee DK, Jeon JI, Kim MH et al. (2005) Oxygen nonstoichiometry (δ) of TiO2-δ-revisited. J Solid State Chem 178:185–193.  https://doi.org/10.1016/j.jssc.2004.07.034 CrossRefGoogle Scholar
  78. 78.
    Fedorov FS, Podgainov D, Varezhnikov A et al. (2017) The potentiodynamic bottom-up growth of the tin oxide nanostructured layer for gas-analytical multisensor array chips. Sensors (Switzerland) 17:2–12.  https://doi.org/10.3390/s17081908 CrossRefGoogle Scholar
  79. 79.
    Nasibulin A, Sommer M, Plugin I et al. (2017) The Room-Temperature Chemiresistive Properties of Potassium Titanate Whiskers versus Organic Vapors. Nanomaterials 7:455.  https://doi.org/10.3390/nano7120455 CrossRefGoogle Scholar
  80. 80.
    Fedorov F, Vasilkov M, Lashkov A et al. (2017) Toward new gas-analytical multisensor chips based on titanium oxide nanotube array. Sci Rep 7:1–9.  https://doi.org/10.1038/s41598-017-10495-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Physics Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations